

The PYroMat User and Developer Handbook

Third Edition, v2.2.5 and later

Christopher R. Martin
Associate Professor of Mechanical Engineering

Penn State University

September 7, 2024

Contents

Foreword 5

Nomenclature 5

1 Introduction 8
1.1 The Properties . 9

1.1.1 Basic Properties 11
1.1.2 Primary Properties 12
1.1.3 Density, ρ . 14
1.1.4 Specific volume, v 15
1.1.5 Temperature, T 16
1.1.6 Pressure, p . 17
1.1.7 Internal Energy, e 17
1.1.8 Enthalpy, h . 18
1.1.9 Entropy, s . 19
1.1.10 Free (Helmholtz) energy, f 20
1.1.11 Gibbs energy, g 21
1.1.12 Specific Heats, cp cv 22
1.1.13 Speed of sound, a 24

2 Getting started 25
2.1 Installation . 25

2.1.1 Prerequisites . 25
2.1.2 Installation with pip 26
2.1.3 Manual installation with git 27
2.1.4 Manual installation from Sourceforge 28

1

2.2 Using PYroMat . 28
2.2.1 Importing . 29
2.2.2 Retrieving substance data 29
2.2.3 Searching for substances with search() 30
2.2.4 Finding substances with info() 31
2.2.5 In-line documentation 32

2.3 Property interface . 33
2.3.1 Property method arguments 33
2.3.2 Default values . 34
2.3.3 Inverse methods 35
2.3.4 Tips and tricks 36

3 Configuration 39
3.1 The pm.config instance 39

3.1.1 Making temporary changes to config 42
3.2 Configuration files . 43

4 Units 45
4.1 Unit definitions . 45
4.2 Setup . 47
4.3 Constants . 48
4.4 Conversion Class . 50
4.5 Fundamental Units . 51

4.5.1 Time . 51
4.5.2 Length . 52
4.5.3 Mass and Weight 53
4.5.4 Molar . 56
4.5.5 Matter . 58
4.5.6 Temperature . 60

4.6 Derived Units . 62
4.6.1 Force . 62
4.6.2 Energy . 63
4.6.3 Pressure . 64
4.6.4 Volume . 66

2

5 The PYroMat modules 69
5.1 The class registry module, reg 69
5.2 The data module, dat 70

5.2.1 The load() function 70
5.2.2 Data files . 72
5.2.3 Tools for working with data files 72

5.3 The utility module, utility 73
5.3.1 PYroMat error types 73
5.3.2 Redundancy tools 73
5.3.3 Other tools . 75

6 Ideal Gases 76
6.1 Properties of ideal gases 77

6.1.1 Ideal gas law . 77
6.1.2 Internal energy 80
6.1.3 Enthalpy . 82
6.1.4 Specific heats . 82
6.1.5 Entropy and enthalpy revisited 83
6.1.6 Formation properties 86
6.1.7 Speed of sound 89
6.1.8 Other properties 90
6.1.9 Properties of mixtures 90

6.2 The ideal gas collection 95
6.2.1 The Shomate equation: ig 95
6.2.2 The NASA polynomial: ig2 97
6.2.3 The ideal gas mixture: igmix 99

7 Multi-phase substance models 102
7.1 General formulation for mp1 103

7.1.1 Nondimensionalization 104
7.1.2 Ideal gas portion of free energy 104
7.1.3 Residual portion of free energy 108
7.1.4 Derivatives of free energy 111

7.2 Calculation of properties 115
7.2.1 Pressure . 115
7.2.2 Entropy . 116
7.2.3 Internal energy 116

3

7.2.4 Enthalpy . 116
7.2.5 Gibbs free energy 117
7.2.6 Specific heats . 117
7.2.7 Speed of sound 119
7.2.8 Liquid-vapor line 120

7.3 Sources implemented . 122

8 Numerical routines 124
8.1 Polynomials of two variables 125

8.1.1 Modifying polynomials for non-integer and neg-
ative powers . 125

8.1.2 Representation of polynomials in data 128
8.1.3 Efficient evaluation of the polynomial 128
8.1.4 Efficient evaluation of derivatives 130
8.1.5 Implementation of the algorithm 131

8.2 Polynomials in one dimension 132
8.3 Iteration with iter1 . 134
8.4 Iteration with hybrid1 137

8.4.1 Bisection iteration 137
8.4.2 The hybrid1 candidates 139
8.4.3 Standard candidate selection 141
8.4.4 Paranoid candidate selection 141

Bibliography 146

4

Foreword

Because this book is long and has never been professionally edited,
it suffers from the kinds of typos and errata that plague any work of
its size. That said, I have taken some pains to be certain that the
information is accurate. Still, errors do creep in.

Corrections in the Second Edition:

1. Equation 6.9 originally read p = 3mn
⟨
u2
⟩
, which is an error. It

now reads p = 1
3mn

⟨
u2
⟩
.

Changes in the Third Edition:

1. Originally, the entropy of mixing was not calculated in the igmix
class, and it was given no discussion in this handbook. The treat-
ment in Chapter 6 (specifically Sections 6.1.9 and 6.2.3 now cor-
rectly treats the entropy of mixing.

2. f was adopted for Helmholtz free energy. In Chapter 7, a was
replaced with f . Added Section 1.1.10.

3. g was adopted for Gibbs energy. Added Section 1.1.11.

4. a was adopted for speed of sound. Added Section 1.1.13.

5. A number of minor corrections (e.g. typos, grammar, style) were
made throughout.

Nomenclature

These variables and units are restricted to derivations in this document.
Because PYroMat has a user-configurable unit system, any of these may
be expressed in alternate units.

The following are parameters with units.

5

Symb. Units Description

a m/s Speed of sound
c J/kg/K Specific heat
e J/kg Internal energy
f J/kg Free energy
g J/kg Gibbs energy
h J/kg Enthalpy
k J/K Boltzmann constant
M kg Mass
N count Number of moles
n m−3 Number density
p Pa Pressure
q J kg−1 Normalized heat addition
R J kg−1 K−1 Gas constant
Ru J kmol−1 K−1 Universal gas const.
s J/kg/K Entropy
T K Temperature
v m3/kg Specific volume
W kg/kmol Molar mass
ρ kg/m3 Density

The following are dimensionless parameters.

Symb. Def. Description

α f/RT ND Free energy
δ ρ/ρc ND Density
τ Tc/T ND Temperature
γ cp/cv Sp. heat ratio
yi mi/m Mass fraction
χi Ni/N Mole fraction
π p/pc ND Pressure

The following are subscripts used throughout the document.

6

Symb. Description

xc Critical point
xf Formation property (e.g. enthalpy of formation)
xp Constant-pressure (sp.heat)
xt Triple point
xv Constant-volume (sp.heat)
x◦ Property at reference pressure
x Property in molar or number units

Special constants used in more fundamental calcuations are defined
throughout this document. Many are listed explicitly in Table 4.1 in
Chapter 4.

7

Chapter 1

Introduction

PYroMat is a Python-based package for calculating the thermodynamic
properties of fluids. That includes liquids, gases, and plasmas. It
is written in pure Python, and the core algorithms only depend on
the Numpy package for back-end numerical and array support. This
document is intended to serve as a reference manual for interpreting,
using, or even writing your own PYroMat data sets.

Probably, no reader will need to digest this handbook in its entirity.
The goal is to include all the important information in a single portable
document. Chatper 2 on Getting Started is probably the one that
most users will need, since it describes installation and basic use of the
software.

For users who want a review of the thermodynamic properties, this
introduction goes into detail on the fundamental definitions for the
properties used. First, we talk briefly about the ideas of primary and
basic properties, which PYroMat uses to organize its work on the back-
end. Then, we will briefly define each property with a modest attempt
to describe its origins and relevance.

For the curious or for developers who may want to add their own
substance models, the inner workings of the package are described in
some detail in Chapters 5, 6, 7, and 8.

8

1.1 The Properties

Here, we begin with a brief review of the thermodynamic properties of
liquids and gases that PYroMat calculates. For a detailed development
of these properties, the reader should consult an introductory text on
thermodynamics1.

In the author’s opinion, contemporary undergraduate texts on ther-
modynamics do the reader a disservice by ignoring the deeply intuitive
(and terribly important) underpinnings provided by the kinetic the-
ory of gases. Kinetic theory and thermodynamics have a complicated
relationship because they were developed in parallel (often in tragic
contention with one another), but the limits imposed by many of the
common assumptions (such as ideal or perfect gas) cannot be deeply
understood without kinetic theory. To the interested reader, the author
would recommend Jeans’s 1949 introductory text2. It is old, but it is
brief, accessible, inexpensive, and approaches the subject only requir-
ing that the reader have a grasp of calculus, geometry, and introductory
mechanics.

PYroMat is primarily concerned with the thermodynamic properties
listed in Table 1.1. There is no single set of units used to express these
properties since PYroMat uses a user-configurable unit system. The
units systems given in Table 1.1 are itemized in Table 1.2. All of
Chapter 4 is devoted to describing PYroMat’s treatment of units.

In theory, thermodynamics can make equal use of almost any pair
of properties to discover the others, and as of version 2.2.0, PYroMat is
quite flexible about which two are used. While this kind of convenience
is part of the purpose of a high-level software tool, users may notice
that some combinations are faster than others, some produce more
numerical inaccuracies than others, and some are simply not possible.

1For example, Cengel and Boles, Thermodynamics, McGraw Hill. Any edition
will do.

2James Jeans, Introduction to the Kinetic Theory of Gases, Cambridge University
Press, 1949.

9

Table 1.1: Thermodynamic properties, their symbols, and their unit
systems

Symbol In-Code Units Description

T T T Temperature
p p P Pressure
ρ d M / V Density
x x - Quality

R R E / M / T Ideal gas constant
W mw Ma / Mo Molecular weight

a a L / t Speed of sound
e e E / M Internal energy
f e E / M Free (Helmholtz) energy
g e E / M Gibbs energy
h h E / M Enthalpy
s s E / M / T Entropy

cp cp E / M / T Constant-pressure specific heat
cv cv E / M / T Constant-volume specific heat
γ gam - Specific heat ratio

Table 1.2: Classes of units, their entry in pm.config, and their defaults.
Unit config entry Default Description

E unit_energy kJ Energy
L unit_length m Length
M unit_matter kg Matter (molar or mass)
Ma unit_mass kg Mass
Mo unit_molar kmol Molar
P unit_pressure bar Pressure
t unit_time s Time
T unit_temperature K Temperature
V unit_volume m3 Volume

10

1.1.1 Basic Properties

Users will see better performance when the state is specified with basic
properties:

• temperature, T ,

• pressure, p,

• density, ρ,

• specific volume, v,

• quality, x.

Except for quality, the state of any substance may always be specified
with any two basic properties, and a basic property may be paired with
any non-basic property.

Other properties, like

• internal energy, e,

• enthalpy, h,

• entropy, s,

can also be used to specify the thermodynamic state, but the user
should be aware of their limitations. Specifying them forces PYroMat
to use a slower back-end algorithm with inherent numerical precision
limitations. There may also be some limitation on how these properties
are combined.

Tables 1.3 and 1.4 show which property combinations are allowed
to be combined to define the thermodynamic state. Combinations are
marked with “X” when they would either be self-contradictory or re-
dundant. Every combination along the diagonal is obviously redun-
dant, but simultaneously specifying specific volume and density is also
redundant. Specifying enthalpy, internal energy, and temperature of
an ideal gas is also redundant, so these combinations are “invalid.”

In Table 1.4, quality, x, is listed as being invalid in combination
with any property that is not temperature or pressure, but the reason
is less obvious than in the ideal gas cases. For example, it is not at

11

Table 1.3: Property combinations that are supported by ideal gas
classes in version 2.4.5. ✓= supported, X = not valid, o = not sup-
ported.

T p d v h e s

T X ✓ ✓ ✓ X X ✓
p ✓ X ✓ ✓ ✓ ✓ ✓
d ✓ ✓ X X ✓ ✓ ✓
v ✓ ✓ X X ✓ ✓ ✓
h X ✓ ✓ ✓ X X ✓
e X ✓ ✓ ✓ X X ✓
s ✓ ✓ ✓ ✓ ✓ ✓ X

all redundant to specify an enthalpy and a quality. However, for many
qualities, there are multiple states that give the same enthalpy, so, for
example, T(h,x), is not theoretically even a function. In more practical
terms, the algorithm would converge to inconsistent results, and may
even diverge due to singularities in the iteration.

Meanwhile, combinations of enthalpy, entropy, and internal energy
are not supported purely for pragmatic reason. The multi-dimensional
iteration that results is easy to implement for specific cases, but it
presents significant stability challenges in the general case. There are
plans to include this functionality in the future, but only when codes
can be shown to deliver garanteed convergence over the entire domain.

1.1.2 Primary Properties

Every thermodynamic model supported by PYroMat is formulated to
calculate the substance’s many properties in terms of temperature and
one other property. For ideal gases, it is temperature and pressure,
and for multi-phase substances it is temperature and density. The
properties that are used in the back-end to calculate the others are
called the primary properties for each model. PYroMat is designed so
that users do not need to be aware of this distinction unless they are
concerned with speed or extreme numerical precision.

For example, an ideal gas model allows entropy (see sec. 6.1.5) to
be calculated from a polynomial in terms of temperature and pressure.

12

Table 1.4: Property combinations that are supported by the multi-
phase class in version 2.4.5. ✓= supported, X = not valid, o = not
supported.

T p d v x h e s

T X ✓ ✓ ✓ ✓ ✓ ✓ ✓
p ✓ X ✓ ✓ ✓ ✓ ✓ ✓
d ✓ ✓ X X X ✓ ✓ ✓
v ✓ ✓ X X X ✓ ✓ ✓
x ✓ ✓ X X X X X X

h ✓ ✓ ✓ ✓ X X o o
e ✓ ✓ ✓ ✓ X o X o
s ✓ ✓ ✓ ✓ X o o X

While this theoretically provides a means for calculating temperature
from entropy and pressure, T (s, p), the entropy polynomial is far too
complex to be inverted explicitly, and defining a separate polynomial
for every combination of properties is impractical. That means that cal-
culating temperature from entropy and pressure is theoretically sound,
but it requires a (relatively) computationally expensive numerical iter-
ation routine - s(T, p) is evaluated repeatedly until a value of T can be
found that produces a value “close enough” to the desired value of s.
Chapter 8 discusses this process in some detail.

Each class is designed around its own primary properties, and the
performance will always be best if users can write their code to use
these properties when they are available. Table 1.5 lists the current
PYroMat substance classes and their primary properties.

For most problems of engineering relevance, temperature and pres-
sure (T, p) are the favorite since both are readily measured, and both
are of immediate importance to fluid machinery design. Fortunately,
all of the common properties of ideal gases can be conveniently con-
structed directly from these two properties. Unfortunately, that is not
the case with real fluids.

It is intuitive that when gases are compressed into tighter spaces,
the distance between the molecules becomes a vitally important pa-
rameter for predicting the substance’s properties. Pressure is not a

13

Table 1.5: The PYroMat substance classes and their primary property
pairs

Desription Class Prim.

Shomate Eqn. ig (T, p)
NASA poly. ig2 (T, p)
IG mixture igmix (T, p)
Span & Wagner mp1 (T, ρ)

convenient metric of that distance, but density is. For this reason,
nearly all non-ideal gas properties are modeled in terms of (T, ρ), and
pressure has to be calculated indirectly.

1.1.3 Density, ρ

It is convenient to begin our discussion of properties with density since
it is the easiest to define.

Density is the quantity of a substance per unit volume it occupies
in space. It can be described as a number of molecules or mass per
unit space. When described with molar units, it is usually called con-
centration, but PYroMat does not make that distinction.

When the unit volume is very tiny, this is a poorly defined quantity.
For example, as the volume shrinks to be about the same size as the
distance between molecules, the density one might measure would vary
hugely as individual molecules entered and left the region of space.
However, as the volume grows within a thermodynamically homoge-
neous region, the ratio of matter to volume converges to a consistent
well-defined value.

This introduces the idea that the study of thermodynamics is es-
sentially a careful study of averages over a large population of mechan-
ical bodies. It is important that we study a quantity of a substance
large enough that the quasi-random motions of individual molecules
do not weigh heavily in our measurements. On the other hand, our
measurements must consider a region of space small enough that the
properties do not vary significantly. We may consider a region to be
thermodynamically homogeneous if any two of its halves exhibit iden-
tical thermodynamic properties.

14

The density of the gas in molecules per unit volume is

n =
N

V
. (1.1)

where V is the volume of the region, and N is the number of molecules.
These numbers are extremely large, and early in the history of chem-
istry, there was no way to know the true number of molecules in a
sample anyway. So, the use of molar quantities was of great utility.

The density in molar units is a slight variation on n,

ρ =
N

NaV
=

N

V
, (1.2)

where Na is Avagadro’s number, and N is the number of moles in the
sample. As we will see in Section 4.5.4, other molar units exist, but
the same formula applies. In this way, the density of molecules may be
expressed either in a literal count per unit volume, n, or in a number
of moles per unit volume, ρ.

In mass units, the density is merely multiplied by the molecular
weight of the species,

ρ = m0
N

V
(1.3)

=
NW

V
=

NW

NaV

when m0 is the mass of a single molecule, and W is the more commonly
used molecular weight in atomic mass units.

Since ρ is not available in the ASCII character set, PYroMat uses
d to represent density.

1.1.4 Specific volume, v

Specific volume is the volume occupied by a unit of matter, and is
calculated as the inverse of density.

v ≡ 1

ρ
. (1.4)

15

Density is the property with the clearer fundamental definition. After
all, how much space can be said to be occupied by a gas molecule?
Formulations that address the average distance between molecules es-
sentially reduce to defining specific volume as the inverse of density.

However, specific volume is mathematically identical to other inten-
sive properties because it expresses the quantity of interest (volume)
per unit matter. That makes it extremely convenient for a number of
thermodynamic calculations.

1.1.5 Temperature, T

Temperature scales were originally developed as quantitative means
for describing hot and cold, but they were developed before we had
more physical descriptions for their meaning. After all, the existence
of molecules and atoms was still being hotly debated while temperature
scales were already in wide scientific and engineering use.

We now understand temperature to be an observable measure of
the molecular translational kinetic energy of a substance. In a gas, the
molecules are free to translate through space, and temperature is pro-
portional to their kinetic energy. In a liquid or solid, the same energy
manifests as molecular vibration within the confines of the intermolec-
ular forces.

For a gas,

⟨1
2
mu2⟩ = 3

2
kT, (1.5)

Here, m is the mass of an individual molecule, ⟨u2⟩ is the mean square
of velocity, k is the Boltzmann constant, and T is the temperature in
absolute units.

The ITS-90 temperature scale establishes an international standard
for the definition of temperature in terms of the triple points of various
pure substances. Many of the property models included in PYroMat
were formulated when the previous ITPS-68 was the international tem-
perature scale, but the changes were so minute that the uncertainties in
the properties usually dominate[1, p.10]. As a result, they are treated
as interchangeable for the purposes of this handbook.

16

See chapter 4.5.6 for more information on the formal definition of
temperature.

1.1.6 Pressure, p

Pressure is the static force exerted by a fluid on a surface. It is quanti-
fied in force per unit area of the surface, and it always acts normal to
the surface facing into the surface (away from the fluid).

In a gas, pressure is due to the impact of molecules on the surface.
Pressure may be increased by increasing either their velocity (temper-
ature) or their quantity (density). Because these effects are linear in
a gas, this leads to the famous ideal gas relationship between density,
temperature, and pressure.

In a liquid or solid, intermolecular forces that cause pressure are
persistent instead of momentary (due to collisions in a gas). Under
these conditions, even slight changes in intermolecular spacing causes
huge changes in pressure, making the substance quite stiff in com-
parison to gases. In this case as well, increasing temperature makes
molecules vibrate more violently in their equilibrium with each other,
so at a consistent average density, the force applied to a neighboring
surface will increase. This is why substances appear to expand as they
are heated.

1.1.7 Internal Energy, e

Energy can be stored in a fluid in many ways. In gases, for example, the
molecules translate with great speed (see temperature), the molecules
vibrate and rotate, and there is incredible energy stored in the chemical
bonds of molecules. However, all of these are dwarfed by the energy
contained in the forces binding the nucleus of each atom.

We account for all of these energies simultaneously with the internal
energy, e, which has units energy per matter (e.g. J/kg). It is neither
practical nor necessary to tally all of these energies in an absolute fash-
ion. Especially since most applications will have no release of nuclear
energy, it is practical, instead, to describe how the substance’s energy
changes relative to some reference state. This is not unlike defining a
reference height for gravitational potential energy calculations in clas-

17

sical mechanics. The choice is arbitrary and has no bearing on the
result, but it can drastically simplify the calculations.

Therefore, we say that the internal energy, e is the sum of vibra-
tional, rotational, translational, chemical, and nuclear energies con-
tained in a thermodynamically homogeneous unit matter, subtracted
by the same sum at some reference state.

Some readers will be scandalized that PYroMat uses e in favor
of the traditional u for internal energy. This is a genuine (if futile)
attempt to untangle the web of contradictory variable use between
thermodynamics and fluid mechanics. u is reserved for velocity, v for
volume, and e for energy.

1.1.8 Enthalpy, h

When a fluid of any kind is flowing, it caries its internal energy with it,
but it also does mechanical work as it flows. The mechanical work done
by a moving fluid is pdV , where p is the pressure exerted and dV is a
differential volume displaced by the fluid. If we were to imagine that the
volume were displaced while the fluid is expanding or contracting, the
same idea applies to a fluid whether it is flowing or not. Per unit mass,
this can be expressed as pdv (when v is specific volume). Integrated
over an isobaric (constant-pressure) process, this becomes simply pv.

It is a matter of convenience for engineers and physicists that deal
with fluid power, that we define enthalpy as the sum of internal energy
and fluid power,

h ≡ e+ pv = e+
p

ρ
. (1.6)

Of course, most processes aren’t actually isobaric, so extra terms will
tend to appear in energy balances (like dh− vdp).

Enthalpy is most commonly used in the analysis of any flowing fluid
such as in heat exchangers, combustors and burners, chemical reactors,
compressors, turbines, valves, etc... Even though internal energy might
be argued to be more “fundamental,” enthalpy is usually tabulated
instead because of its widespread use.

Since internal energy and enthalpy are related, their reference states
must be consistent with one another. By tradition in both the NIST-

18

JANAF and NASA data sets, the enthalpy of a substance is defined
at 298.15 K and 1 bar, and values at other conditions are calculated
from specific heat and the physics of ideal gases. Since the PYroMat
multi-phase models permit only pure substances, their reference states
do not need to be interchangeable. By tradition, the internal energy
and entropy of these substances are defined as zero for the liquid at the
triple point.

See the ideal gas (Chapter 6) and multi-phase (Chapter 7) chapters
for more information on how the reference states are handled.

1.1.9 Entropy, s

The idea of entropy is born with the Clausius statement of the Second
Law of Thermodynamics, which says that a reversible cyclic series of
processes that include heat transfer must obey∮

δq

T
=
rev.

0, (1.7)

where T is the temperature of the substance and δq is the addition of
heat. It is important to emphasize that this is only true of processes
that result in a continuous cycle where the fluid ends at the same ther-
modynamic state from which it began (like in an engine or refrigeration
cycle).

The first law would be satisfied by any cycle where the work and
heat transfer merely summed to zero, but the Clausius equality implies
something deeper. Heat is not a property of the substance, but heat
added reversibly in ratio with the temperature consistently returns to
zero when the substance returns to its original thermodynamic state.
That implies the existence of a new (and terribly important) property.
Clausius termed that property entropy,

ds ≡
rev.

δq

T
(1.8)

From the first law of thermodynamics, δq = de+ pdv, and we have
a way to calculate entropy from the other properties

Tds =
rev.

de+ pdv (1.9)

= dh− vdp (1.10)

19

This calculation is performed by putting the substance through a hypo-
thetical reversible process in which there is neither chemical reaction,
nor field work (e.g. gravitational or electrical).

Just like with temperature, there is a parallel (mathematically con-
sistent) definition of entropy from statistical mechanics. The above
definition of entropy had long been in use, when Boltzmann found that
Entropy can also be calculated from the probability of the substance
obtaining a thermodynamically equivalent state. The probability of
gas molecules spontaneously exhibiting a specific set of positions and
velocities is astronomically low, but there is an immense quantity of
dissimilar positions and velocities that would give the gas precisely the
same temperature, internal energy, pressure, density, and other prop-
erties. For a given volume populated with a given substance with a
given number of molecules with a given amount of total energy, how
numerous are those states in comparison with all the other possible
states?

Entropy is high when the number of equivalent states is high. En-
tropy is low when the number of equivalent states is low. The idea was
fiercely resisted when Boltzmann and his contemporaries first argued
it. From one point of view, it is astonishing that the idea was first
discovered by brilliant insight without statistics.

Just like internal energy, it is theoretically possible to tally all of
the possible states and calculate the probability of each, but that task
is neither practical nor necessary. Instead, it is convenient to define
the entropy as zero at some reference state and then deal merely in
changes in entropy as defined by (1.8). In the case of ideal gases, the
entropy is known to be precisely zero at absolute zero temperature, but
some multi-phase models (like water) set entropy (and internal energy)
of the liquid phase to zero at the triple point.

1.1.10 Free (Helmholtz) energy, f

The free energy is written in terms of internal energy and entropy,

f ≡ e− Ts. (1.11)

While free energy has long been used as a tool for calculating the
mechanical work available from a substance at a given temperature,

20

modern equation-of-state substance models use f as the property from
which all others are calculated.

There is tremendous potential for confusion, because various au-
thors have also referred to Gibbs energy as “free energy.” Here, we
strictly reserve that phrase to refer to e− Ts.

Sources can be found using a, ϕ, α, and many other characters
to represent free energy. We adopt f for its relationship to the word
“free,” and to reserve these variables for other uses.

1.1.11 Gibbs energy, g

The Gibbs energy is defined as,

g≡ e+
p

ρ
− Ts (1.12)

= h− Ts

= f +
p

ρ
.

It has historically been called free enthalpy or Gibbs free energy as
well. Here, we adopt the recommendations of the IUPAC and refer to
it simply as Gibbs energy.

Its use is primarily in systems with chemical or phase reactions. In
these applications, properties are written in terms of the chemical po-
tential, µi, which is the contribution of each constituent to the internal
energy,

dE = TdS − pdV +
∑
i

µidmi

= TdS − pdV +
∑
i

µidNi

Note that the properties in these formulae are extensive (total energy
rather than energy per unit matter).

Here, chemical reactions or phase transitions cause changes in the
mass, mi, or moles, Ni, of each substance, which can consume or re-
lease energy. So, for a hypothetical reaction with constant entropy and

21

volume,

µi =

(
∂E

∂mi

)
s,v

=

(
∂e

∂yi

)
s,v

. (1.13)

Because reactions conserve mass, it is equally valid to write the chem-
ical potential in terms of the intensive properties. This only works
because d(em) = mde. The same is not true of d(eN), because dN is
not necessarily zero in a chemical reaction.

Specifying properties in terms of volume and entropy in a reacting
experiment is not particularly practical. Examining chemical potential
in terms of enthalpy merely transposes the expression into constant
entropy and pressure. However, when we examine the differential of g,

dg = (de) + (pdv + vdp)− (Tds+ sdT),

and substitute to find the chemical potentials,

dg − (pdv + vdp) + (Tds+ sdT) = Tds− pdv +
∑
i

µidyi

dg = vdp− sdT +
∑
i

µidyi.

Temperature and pressure are among the most commonly specified
properties when performing thermodynamic calculations, so it is ex-
tremely convenient to write the chemical potential in terms of Gibbs
energy,

µi =

(
∂g

∂yi

)
T,p

. (1.14)

In chemical reactions, it is unusual to work in intensive units, since
the number of moles changes. Instead, this relationship is usually ex-
pressed extensively.

µi =

(
∂G

∂mi

)
T,p

. (1.15)

µi =

(
∂G

∂Ni

)
T,p

. (1.16)

(1.17)

22

1.1.12 Specific Heats, cp cv

Of the properties so far defined, only temperature, pressure, and den-
sity can be directly measured. The specific heats are vitally important
to the study of a substance, because they can be conveniently directly
measured and the other properties calculated from them.

Specific heat, c, is the amount of heat per mass of a substance, δq,
required to obtain a small increase in temperature, δT ,

c ≡ δq

δT
. (1.18)

Especially when dealing with gases, we have to be more specific
because substances have a tendency to expand when they are heated.
One measures a different value for specific heat depending on whether
or not expansion is allowed.

For any process, energy will be conserved, so

δq = de+ pdv. (1.19)

Here, δq is heat added per mass of the substance, de is the change in
internal energy, p is the pressure, and dv is the change in volume per
unit mass.

When heat is applied in such a manner that the substance’s volume
is constant, dv = 0, the mechanical work is zero, and all of the heat is
stored as internal energy.

δq|v = de

=

(
∂e

∂T

)
v

dT (1.20)

Thus, the constant-volume specific heat is, by definition,

cv ≡
(
δq

δT

)
v

=

(
∂e

∂T

)
v

. (1.21)

In this process, the substance’s pressure will rise (sometimes sharply)
as it is heated in a rigid container.

When one considers addition of heat under constant pressure, a
trick application of the chain rule for the term, pv, lets us transition

23

the differential on volume into a differential on pressure. The definition
for enthalpy (1.6) appears naturally.

δq = de+ pdv + vdp− vdp

= d(e+ pv)− vdp (1.22)

When heat is added while pressure is constant (like in an atmo-
spheric gas), dp = 0, and

δq|p = dh

=

(
∂h

∂T

)
p

dT (1.23)

Thus, constant-pressure specific heat is, by definition,

cp ≡
(
δq

δT

)
p

=

(
∂h

∂T

)
p

. (1.24)

1.1.13 Speed of sound, a

Like specific heats, the speed of sound is the property of a substance
that can be measured in the laboratory to high precision, making it
a valuable tool. Pressure wave propagation in a substance obeys the
equation,

∂2p

∂t2
+

(
∂p

∂ρ

)
s

∂2p

∂x2
= 0. (1.25)

A wave with wavenumber, k, propagating at constant speed, a, might
take the form

p = sin
(
k(x+ at)

)
.

This satisfies (1.22) only when

a2≡
(
∂p

∂ρ

)
s

. (1.26)

So, wave speed in a substance is the square root of the isentropic rise
in pressure with increasing density.

Wave speed is usually denoted with the variable, c, which we reserve
for specific heats. Authors can be found using w and a, and we have
selected the latter.

24

Chapter 2

Getting started

In this chapter, we discuss everything you should need to get your own
installation of PYroMat working and providing properties.

2.1 Installation

PYroMat is distributed primarily through the Python package index
(https://pypi.org/), but it can also be downloaded and installed
“manually” if you have Python’s setuptools installed. PYroMat is writ-
ten in plain Python, so there is no need to compile to binaries. All data
are encoded in json format (https://docs.python.org/3/library/
json.html), and the configuration files are executable python code.
The result is that all of the code, data, and configuration files are in
human readable text using only the ASCII character set.

2.1.1 Prerequisites

Obviously, a Python interpreter needs to be installed on your system,
but PYroMat is deliberately designed to minimize the number of pre-
requisites. Only Numpy version 1.7 or later is required.

It is worth noting that PYroMat was originally developed in Python
2, but support for Python 3 was designed in from the start. As of
January 2020, Python 2 was officially depreciated, and PYroMat testing
on Python 2 halted. On a number of popular Linux systems, Python

25

https://pypi.org/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

2 is still the system default, though, so users should take note. If your
system has both Python 2 and Python 3 installed, it may be necessary
to replace python in the instructions below with python3 to specify
the version.

2.1.2 Installation with pip

Python uses a package called pip (https://pip.pypa.io) to manage
its own software. You can use it to automatically download and install
PYroMat and its dependencies with a single command.

In an Anaconda installation start the “Anaconda Prompt” to
bring up a terminal. See https://www.anaconda.com/ for more infor-
mation.

In Windows with a system-wide Python interpreter, bring up a
command prompt or type cmd in the “run” field to bring up the prompt.
You may need to run the terminal as an administrator. If so, right click
on the icon and open using the “run as administrator” option in the
menu.

In Linux or MacOS bring up a terminal any way you like. In
many popular installations Ctrl+Alt+T works by default.

First, it is important to make sure your python package manager is
installed and updated. A Python installation without pip is ususual,
but they do still appear from time to time. If you do not have pip

on your system, follow the directions from the Python packaging au-
thority to get it up and working: https://pip.pypa.io/en/stable/
installation/.

On just about all systems, entering the following commands in a
terminal will update pip and install PYroMat.

$ python -m pip install --upgrade pip

$ python -m pip install --upgrade pyromat

Note that you don’t need to type the $; it represents the command
line prompt. On a Windows system, it might appear C:\>, on most
Unix-like terminals, it may appear user@machine:~\$. Your prompt
may look a little different, and that’s OK. If Python is already correctly
installed these commands should get you going.

26

https://pip.pypa.io
https://www.anaconda.com/
https://pip.pypa.io/en/stable/installation/
https://pip.pypa.io/en/stable/installation/

What are these commands doing? The first part, python -m pip,
is executing Python’s pipmodule with the options you pass next. Next,
install --upgrade, tells pip that you want to install something over
the internet from the python package index (https://pypi.org/), and
that if there is a newer version of an existing package available, it should
be upgraded. Finally, the last argument tells pip what to install. So,
the first line is telling pip to upgrade itself, and the second line is
actually installing pyromat.

It should be noted that many Linux systems still use Python 2 by
default, so you may want to specify Python 3 specifically. In most
systems, this will make certain that the installation is in the Python 3
interpreter and not Python 2.

$ python3 -m pip install --upgrade pip

$ python3 -m pip install --upgrade pyromat

Installing in system-wide Python installations has gone out of pop-
ularity in recent years, but if that’s what you’re doing, you may need
to run pip as an administrator. Most installations these days are in
virtual environments or some other needlessly complicated setup that
obfuscates the whole thing, so if you’re doing this the old-school global
way, you have my respect, and I want to support you.

On a Windows system, you will need to restart the prompt as a
priviledged user (administrator). Usually, you can right-click and select
“run as administrator” when you start the command prompt.

On a Linux, Mac, or Unix system, you may need to run as a super
user, so you should use

$ sudo -H python -m pip install --upgrade pip

$ sudo -H python -m pip install --upgrade pyromat

The -H switch is recommended by the Python package index to be
certain that the root user’s home directory is used during install.

2.1.3 Manual installation with git

So-called manual installation is also quite easy using git if you already
have Python’s setuptools (https://setuptools.readthedocs.io/
en/latest/) installed and udpated.

27

https://pypi.org/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/

Just clone the git repository, then navigate into the root directory
and run the setup.py installation script. This is the stage where an
error will be generated if there is a problem with setuptools.

$ git clone https :// github.com/chmarti1/pyromat.git

$ cd pyromat

$ python setup.py install

2.1.4 Manual installation from Sourceforge

This method has largely fallen out of favor, but it is still a perfectly
valid way to perform an installation. Like the GitHub method, this
method only works if you have setuptools (https://setuptools.
readthedocs.io/en/latest/) installed and updated.

Download the latest version of PYroMat from https://sourceforge.

net/projects/pyromat/. Select whichever compression type that suits
you (e.g. zip, bz2, gzip). Then, extract the package, creating a pyromat
directory.

Bring up a command prompt (see above for how to do that on your
system), and navigate to the extracted directory using the appropriate
cd commands (https://docs.microsoft.com/en-us/windows-server/
administration/windows-commands/cd).

Finally, execute the Python setup script.

$ cd /path/to/your/dir

$ python setup.py install

2.2 Using PYroMat

This section assumes that users already have a basic familiarity with
the Python command line. For users that are just getting started, try
sampling the official Python Tutorial (https://docs.python.org/3/
tutorial/index.html).

First, open a command prompt (terminal) and start Python in
interactive mode.

$ python3 # On my system , I need to specify 3

Python 3.6.9 (default , Jan 26 2021, 15:33:00)

28

https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://sourceforge.net/projects/pyromat/
https://sourceforge.net/projects/pyromat/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cd
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cd
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for

more information.

>>>

2.2.1 Importing

Import PYroMat like any other package.

>>> import pyromat as pm

It automatically loads its modules, and automatically seeks out and
loads data.

Once loaded, there are only three functions in the base PYroMat
package that most users will ever need: get(), search(), and info().
These are tools that interact with the PYroMat data collection to re-
trieve data class instances and print information about them. All of
the rest of the functionality is offered by the class instances themselves.

2.2.2 Retrieving substance data

PYroMat identifies substances by a unique string called the substance
identifier (ID). The substance ID string for ideal gas nitrogen is ’ig.N2’.
The ig prefix indicates that the substance model belongs to PYroMat’s
ideal gas collection. The rest of the string is the substance’s chemica
formula using Hill notation.

Hill notation removes the ambiguity in how a chemical formula is
represented by mandating that all substances with the same atomic
composition will be represented by the same strings. The atomic con-
tents are listed in order of carbon, hydrogen, and then all others in
alphabetical order.

By deliberately omitting all chemical structure from the notation,
there will be collisions between compounds with the same atomic com-
position in dissimilar arrangements. So far, these collisions are rare
in the PYroMat data collection, and they are addressed by append-
ing an underscore and an index. For example, the CNN radical and
methanetetraylbis-amidogen both have the same chemical formula, so
the former has the ID string, ig.CN2, and the latter is listed under
ig.CN2_1.

29

Given an ID string, the get function returns the corresponding
class instance. This instance provides all of the property methods.
This example calculates the ideal gas enthalpy of nitrogen at 492 K.

>>> n2 = pm.get(’ig.N2’)

>>> n2.h(T=492)

array ([202.68455864])

In this example, the variable, n2, is an ideal gas class instance with
all the methods (like h()) needed to calculate its properties.

2.2.3 Searching for substances with search()

There are about 1,000 unique substance models in PYroMat version
2.2.0, so manually skimming through the list is not a very efficient
means of finding the species you want. The search() function re-
turns sets of substances that match the criteria supplied. Those sets
can either be used directly, or the info() function can display more
information (see below).

Searching is done by specifying keywords to the search() function.
Each one adds a new criterion that further narrows the search. The
results are

The name keyword is used to search for an exact match with part
of the substance ID or for a case-insensitive match with one of the
substance’s names. For example,

>>> pm.search(name=’Acetylene ’)

{<ig2 , ig.C2F2 >, <ig2 , ig.C2HCl >, <ig2 , ig.C2HF >, ...

>>> pm.search(name=’C2H’)

{<ig2 , ig.C2HCl >, <ig2 , ig.C2HF >, <ig2 , ig.C2HN >, ...

These show how a name string can be used to match part of one of
a substance’s common name or part of the substance ID string.

The pmclass is the name of the class that is used to implement
the data model for each substance. As of version 2.2.0, there are four
classes implemented: ig, ig2, igmix, and mp1. These are described in
detail in sections 6.2.1, 6.2.2, 6.2.3, and 7.1.

The collection keyword allows users to specify the collection to
which species must belong. This forces the substance id string to begin

30

with “collection.” For example collection=’ig’ forces all of the
substances returned to belong to the ideal gas collection.

The InChI[2] and CAS[3] substance identifiers can also be used to
narrow the search. Since these are unique substance identifiers, they
will only return multiple entries when the same substance is represented
in multiple collections. To specify these, use inchi=... or cas=... as
keyword arguments. It is important to keep in mind that as of version
2.2.0, not all entries have had these values added to the data, so some
results may not come back as expected.

Probably the most powerful of the search tools, the contains key-
word allows users to specify the atomic contents of the substance. Val-
ues may be the string name of an element, or lists of element name
strings, or dictionaries with element names and their precise amounts.
For example, these queries return all substances (1) with any amount
of iron, (2) with any amount of bromine and carbon, and (3) with two
hydrogen, one oxygen, and any nonzero amount of carbon.

>>> pm.search(contains=’Fe’)

{<ig , ig.Br4Fe2 >, <ig, ig.FFe >, <ig2 , ig.H2FeO2 >, ...

>>> pm.search(contains =[’Br’,’C’])

{<ig , ig.CBrF3 >, <ig, ig.CBr4 >, <ig, ig.CBr >, ...

>>> pm.search(contains ={’H’:2, ’O’:1, ’C’:None})

{<ig2 , ig.C2H2O >, <ig2 , ig.CH2O >}

Because the search() function returns a Python set instance, ap-
plications that demand more nuanced search operations can use the set
operations to combine the results of separate searches. For example,
to find substances that contain two hydrogen or three carbon,

>>> h2 = pm.search(contains ={’H’:2})

>>> c3 = pm.search(contains ={’C’:3})

>>> h2.union(c3)

{<ig , ig.H2P >, <ig2 , ig.C6H2 >, <ig2 , ig.CH2Cl2 >, ...

For more tips and tricks with sets, see the Python documentation
https://docs.python.org/3/tutorial/datastructures.html#sets.

2.2.4 Finding substances with info()

When called without any arguments, the info() function lists all of the
substances available, and it lists all of the property methods available

31

https://docs.python.org/3/tutorial/datastructures.html#sets

for each. That probably won’t be useful for most users, so the function
also passes any keyword arguments to search() internally to narrow
down the set.
>>> pm.info(contains =[’Br’,’C’])

PYroMat

Thermodynamic computational tools for Python

version: 2.2.0

--

ID : class : name : properties

--

ig.CBr : ig : Bromomethylidyne : T p d v cp cv gam e h s mw R

ig.CBr4 : ig : Carbon tetrabromide : T p d v cp cv gam e h s mw R

ig.CBrF3 : ig : Bromotrifluoromethane : T p d v cp cv gam e h s mw R

ig.CBrN : ig : Cyanogen bromide : T p d v cp cv gam e h s mw R

Alternately, an iterable of substance instances (like the one gener-
ated by search() may be passed directly to info().

The table shows each substance listed by its ID string and one of
its common names (if one is included in the data). There is also a list
of the properties currently offered in the data model.

If a substance ID string, a single substance instance, or a set (or
other iterable) with only one entry is passed, the info() function prints
detailed information on that substance.
>>> pm.info(’ig.N2’)

Information summary for substance: "ig.N2"

N

2

Names : Nitrogen

Nitrogen gas

N2

UN 1066

UN 1977

Dinitrogen

Molecular nitrogen

Diatomic nitrogen

Nitrogen -14

Molecular Weight : 28.01348

CAS number : 7727-37 -9

InChI string : InChI=1S/N2/c1 -2

Data class : ig2

Loaded from : /home/chris/Documents/pyromat/src/pyromat/data/ig2/N2.hpd

Last updated : 21:11 April 20, 2022

The supporting data for this object were adapted from: B. McBride , S.

Gordon , M. Reno , "Coefficients␣for␣Calculating␣Thermodynamic␣and␣Transport

Properties␣of␣Individual␣Species ," NASA Technical Memorandum 4513, 1993.

2.2.5 In-line documentation

While it is also designed to run efficiently in scripts, all aspects of
PYroMat were designed with ease of use from the command line in

32

mind. Most users will first learn PYroMat through the command line
and then go on to write scripts that automate their calculations.

With that in mind, every class instance, every method, and every
module has in-line documentation that can be accessed using Python’s
built-in help() function. For example, try typing:

>>> help(n2)

>>> help(n2.h)

>>> help(pm)

2.3 Property interface

The property methods that belong to the many substance class in-
stances use flexible arguments that are as standardized as is practical.
Details about the individual properties and the theory behind them
is included in chapters 6 and 7, but there are some general rules that
apply to all substances in PYroMat.

2.3.1 Property method arguments

With a few special exceptions, a thermodynamic state can be specified
with any two properties (except specific heats). For example,

>>> n2 = pm.get(’ig.N2’)

>>> T = 452.

>>> p = 14.

>>> n2.s(T=T, p=p)

array ([6.49072181])

>>> n2.s(T=T, d=n2.d(T=T, p=p))

array ([6.49072181])

Or, with multi-phase data,

>>> n2 = pm.get(’mp.N2’)

>>> n2.s(T=T, p=p)

array ([6.48696146])

>>> n2.s(T=T, d=n2.d(T=T, p=p))

array ([6.48696146])

>>> n2.s(T=100, x=0.5)

array ([4.18094321])

33

The last line uses quality to specify a 50/50 mixture of liquid and vapor
nitrogen at 100 K.

This works with all basic properties (see section 1.1.1) T , p, ρ, v, and
x (multi-phase only). In ideal gases, specifying e or h is equivalent to
specifying T , so they can be expressed in almost any combination, just
like a basic property. However, simultaneously specifying h, e, and/or
T to an ideal gas property triggers an exception. Meanwhile, multi-
phase classes do not tolerate simultaneously specifying h, e, and s;
not because it is theoretically invalid, but because it causes potentially
unstable numerical iteration. These nuances are tabulated in Tables
1.3 and 1.4.

Other properties like e, h, and s, may be specified as well, but only
one at a time with a basic property. For example, PYroMat does not
support property evaluations with h and s simultaneously. Instead s
or h may be specified with one of the basic properties like T .

>>> n2.h(T=100,x=0.5)

array ([7.27884341])

>>> n2.h(s=4.18090744 , T=100)

array ([7.27884313])

>>> n2.T(s=4.18090744 , h=7.27884313)

...

pyromat.utility.PMParamError: Properties may not be

specified together: s, h

Note that some numerical accuracy is lost in the process of inverting
the property. Specifying a property like entropy is also far more compu-
tationally expensive than specifying basic properties like temperature,
density, or pressure. As a result, it is best practice to calculate tem-
perature, density, pressure, or quality and calculate other properties in
terms of those.

>>> import pyromat as pm

>>> n2.T(s=n2.s(T=300,p=2.5), p=2.5)

array ([299.99994672])

2.3.2 Default values

It is not unusual that users may want vaguely defined properties. For
example, ”what is the specific heat of water?” That question has an

34

infinite number of answers depending on the state of the water, so a
property method really can’t answer it. On the other hand, when users
want properties without specifying a state, they usually mean ”. . . at
standard conditions.”

All property methods apply default primary property values when
properties are unspecified. For example,

>>> h2o = pm.get(’mp.H2O’)

>>> h2o.cp()

array ([4.18131499])

tells the user that the specific heat of liquid water is about 4.18 kJ/kg/K
at 273.15 K and 1.01325 bar. That default temperature and pres-
sure can be changed by setting the def_T and def_p parameters in
pm.config. See chapter 3 for more information on configuring PYro-
Mat.

When only one property is specified, the second property will revert
to a default value. If temperature is specified, then pressure reverts to
its default. If any other property is specified, then temperature reverts
to its default and pressure is unspecified. For example,

>>> h2o.cp(T=540) # T=540K, p=1.01325 bar

array ([1.99666454])

>>> h2o.cp(p=0.01) # T=273.15K, p=0.01 bar

array ([1.87429701])

>>> h2o.cp(d=.01) # T=273.15K, d=.01kg/m3

array ([1.87870465])

Note that the default values are specified in whatever units PY-
roMat has been configured to use. By default, PYroMat uses K, kJ,
kg, bar, m3. If the unit system is changed, the default values should
also be changed to reflect the intended values in the new unit system.
See chapter 4 for more information on units and chapter 3 for more
information on configuring PYroMat.

2.3.3 Inverse methods

Before version 2.2.0, the interface only accepted basic properties (see
section 1.1.1) T , p, ρ, and x. To handle cases where users had secondary
properties like entropy or enthalpy, methods like T_s were created to

35

Table 2.1: Inverse property methods and their availability by class
ig ig2 mp1

T_h 2� 2� 2�
T_s 2� 2� 2�
d_s 2 2 2�
p_s 2� 2� 2

calculate “temperature from entropy” and one other property. Orig-
inally, T_s, p_s, d_s, T_h, and other inverse property methods were
specific to the class and the property. The new interface introduced in
version 2.2.0 obsoleted these methods, but they are still available for
reverse compatibility. Table 2.3.3 shows the historical inverse property
methods that are still available on the basic classes. They should not
be used in new codes.

New codes designed to determine temperature (or any other prop-
erty) from enthalpy or entropy should merely use a direct call to T()

or other desired methods.

2.3.4 Tips and tricks

There are some guidelines that users can use to obtain dramatically
better performance out of PYroMat.

Avoid calculating property values in a for loop. Instead,
construct property values as arrays, lists, tuples, or other iterables and
pass them to a single property method call. For example,

>>> import numpy as np

>>> import pyromat as pm

>>> h2o = pm.get(’mp.h2o’)

>>> ###### DON’T DO THIS ######

>>> h = []

>>> for T in np.linspace (300 ,1000 ,101):

... h.append(h2o.h(T))

...

>>> ###### Do this instead ######

>>> T = np.linspace (300 ,1000 ,101)

>>> h = h2o.h(T)

36

On many systems, the first code segment can take four or five seconds
to run! The second code segment consistently takes a small fraction of
a second to run and makes for much cleaner code.

PYroMat is written to assume that all inputs and outputs are multi-
dimensional arrays. Simple floating point scalars are taken to be special
cases. Programming numerical codes like property evaluation in plain
Python has a steep numerical penalty, but much of that can be regained
by leaning on Numpy’s (https://numpy.org) compiled back-end for
efficient numerical methods on arrays.

Ideal gases are faster than the mp1 model. Ideal gases only
have to evaluate a polynomial. The multi-phase mp1 model requires
multiple parallel polynomials with computationally expensive exponen-
tial terms. Single equation-of-state multi-phase models sacrifice com-
putational speed in favor of a single model that works well in liquid,
gas, near critical, and super-critical states.

Prefer temperature and density when working with multi-
phase substances. The mp1 class calculates all properties (including
pressure) in terms of temperature and density. When another com-
bination of properties is specified (e.g. temperature and pressure) an
iterative routine has to run first to isolate temperature and density.
That is why the example above takes so long to run; it requires two it-
erative algorithms run in series. When a series of properties are needed
at a given state, it is much faster to calculate the density first and pass
temperature and density to all of the successive property methods.

Using the state() method is faster than separate calls to
properties. In all classes, the state() method minimizes the number
of back-end polynomial evaluations to calculate the properties at a
state. If a user needs more than two properties, chances are good
that it is worth it to just go ahead and calculate them all. Multi-phase
properties especially require the calculation of a number of intermediate
parameters that can be re-used in successive property evaluations.

The mp1 property methods can return quality too. When
running a property method like T(), it is often a good idea to go ahead
and calculate the quality by setting the optional keyword quality=True.
All of these routines have to calculate the saturation properties anyway,
so one might as well save the redudnant steps.

37

https://numpy.org

>>> T,x = h2o.T(s=4.331 , p=1.01325 , quality=True)

>>> print(T,x)

[373.12429581] [0.50004124]

38

Chapter 3

Configuration

There are parameters that most users will never need to change, but
that some users may find irritating or even limiting. For example, no
unit system ever seems to make everyone happy. There is a configura-
tion system that allows users to alter settings that are honored by the
PYroMat substance model classes.

3.1 The pm.config instance

The PYroMat configuration system is implemented by a custom class
instance called config. It mimics a dictionary in that it has a series of
string parameters that have values associated with them. Evoking the
configuration object prints its contents in a table.

>>> import pyromat as pm

>>> pm.config

config_file : [’/home/chris/Documents/PYroMat/

pyromat/defaults.py’]

config_verbose : False

dat_dir : [’/home/chris/Documents/PYroMat/

pyromat/data’]

dat_exist_fatal : False

dat_overwrite : True

dat_recursive : True

dat_verbose : False

...

39

Unlike a dictionary, the PMConfig instance enforces certain rules
that are specific to each of the configuration entries.

• Configuration entries can be neither created nor deleted.

• The value of a read-only entry (marked “R” in Table 3.1) cannot
be changed.

• The values of an appendable entry (marked “A” in Table 3.1)
cannot be overwritten. Instead, new values are appended to the
end of a list of values.

• Entry values must be of an appropriate data type.

Table 3.1 lists the configuration parameters, their hard-coded ini-
tial values when the configuration instance is first created, and a brief
description for each. Entries to which special rules apply are marked
with an (A) for appendable or (R) for read-only.

Table 3.1: Configuration parameters, their rules, and their descrip-
tions. Parameters that are appendable are marked with (A), and
parameters that are read-only are marked with (R). Paths are ref-
erenced relative to the PYroMat installation directory and not the
user working directory.

Entry (Rule) Initial Description
config_file (A) [’./config.py’] String file paths to load for con-

figuration values
config_verbose False Print descriptions of the configu-

ration load process?
dat_dir (A) [’./data’] String paths to directories to scan

for .hpd files
dat_exist_fatal False Raise an exception if there are

two definitions for the same sub-
stance id?

dat_overwrite True Overwrite older substance ids
with newer ones?

dat_recursive True Recurse into sub-directories when
looking for data files?

dat_verbose False Print descriptions of the data
load process?

40

Table 3.1: continued. . .

Entry (Rule) Initial Description
def_T 298.15 Default temperature in units,

def_T_unit

def_T_unit ’K’ Default temperature unit
def_oob numpy.nan Value to use when the state is

out-of-bounds
def_p 1.01325 Default pressure in units,

def_p_unit

def_p_unit ’bar’ Default pressure unit
error_verbose True Is verbose PYroMat error print-

ing enabled?
install_dir (R) ’./’ Path to the PYroMat installation
reg_dir (A) [’./registry’] A list of directories to scan

for .py files containing PYroMat
classes

reg_exist_fatal False Raise an exception if there are
two definitions for the same class?

reg_overwrite True Overwrite older class definitions
with new ones?

reg_verbose False Print descriptions of the registry
class discovery process?

unit_energy ’kJ’ Unit string for energy
unit_force ’N’ Unit string for force
unit_length ’m’ Unit string for length
unit_mass ’kg’ Unit string for mass
unit_matter ’kg’ Unit string for matter
unit_molar ’kmol’ Unit string for mole count
unit_pressure ’bar’ Unit string for pressure
unit_temperature ’K’ Unit string for temperature
unit_time ’s’ Unit string for time
unit_volume ’m3’ Unit string for volume
version (R) <version> The PYroMat installation version

string
warning_verbose True Is verbose PYroMat warning

printing enabled?

41

3.1.1 Making temporary changes to config

Configuration entry values can be retrieved and written like dictionary
values. In this example, we check the version string and change the
temperature units to Farenheit.

>>> import pyromat as pm

>>> pm.config[’version ’]

’2.2.0’

>>> pm.config[’unit_temperature ’] = ’F’

Parameters that are appendable do not behave the same way. When
they are written to, they accumulate new values. For example,

>>> pm.config[’config_file ’] = ’/etc/pyromat.py’

>>> pm.config[’config_file ’]

[’/home/chris/Documents/PYroMat/pyromat/config.py’, ’

/etc/pyromat.py’]

Observe that instead of overwriting the previous configuration file, the
new value was appended to the list.

Undoing a configuration change can be done using the restore default()

method. When it is used as an entry method, it only applies to that
entry.

>>> pm.config[’unit_temperature ’]

’F’

>>> pm.config.restore_default(’unit_temperature ’)

>>> pm.config[’unit_temperature ’]

’K’

The “default” values honored by the restore default() method are
hard-coded, so if there is a flaw somewhere in the configuration process,
the system can be restored to functional settings by calling
restore default() with no argument. Then, all of the parameters
will be reset to their defaults.

In the next section, we will discuss how to write configuration files
that override these defaults. They will be automatically loaded when
PYroMat is imported, but the config.load() method will manually
repeat the configuration load process.

42

3.2 Configuration files

To make changes to the configuration that persist when PYroMat is re-
loaded, values should be written to configuration files. PYroMat con-
figuration files are Python scripts that are expected to define variables
with the same names as the configuration parameters. Any variables
created that are recognized as valid PYroMat configuration parameters
are read into the configuration. Any variables that are unrecognized or
that have values with invalid types result in a PMParamError exception.

Loading all of its configuration files is the very first thing PYroMat
does when it is loaded by the Python import system. First, pm.config
is initialized with hard-coded initial values listed in Table 3.1. Even if
all other aspects of the configuration process fail, the system will still
be able to function with these basic parameters.

Then, the configuration load process begins. Configuration files are
read one-by-one in the order they are listed in config_file until they
have all been loaded. By default, the only path in config_file is
./config.py, located in the PYroMat installation directory, but each
time a configuration file is read in, new configuration files can be added.
In this way, configuration files can add more configuration files. The
loading algorithm protects users are protected against infinite loads by
checking for files that reference each other or themselves.

The config.py file located in the base installation directory is heav-
ily commented with instructions for administrators to make their own
changes. Many administrators may want to add a configuration file
in /etc/ or in users’ home directory somewhere. The example below
shows a config.py file that admins might want to place in the PY-
roMat install directory to allow users to apply their own settings and
write their own data models without a virtual environment.

This is an example of a configuration script that might appear in
config.py.

This adds two new configuration files.

The first is a global configuration file in /etc.

The second is in a hidden directory in the user’s

home directory. The order is important. Placing

the user’s settings last means that their options

will overwrite the global options.

43

config = [’/etc/pyromat.py’, ’~/. pyromat/config.py’]

These add registry and data directories in the

user’s home directories.

reg_dir = ’~/. pyromat/registry ’

dat_dir = ’~/. pyromat/data’

These entries reconfigure PYroMat to use the

imperial system of units. These entries

could appear anywhere in the configuration

process.

unit_temperature = ’F’

unit_length = ’ft’

unit_volume = ’ft3’

unit_pressure = ’psi’

unit_energy = ’BTU’

unit_matter = ’lb’

unit_force = ’lb’

unit_molar = ’lbmol ’

For more information on the units, see Chapter 4. For more infor-
mation on the registry, data files, and the load process, see Chapter
5.

44

Chapter 4

Units

PYroMat handles a wide variety of units automatically, but interested
users are also welcome to use the back-end algorithms for their own pur-
poses. All of the core substance methods deal in their own native units,
but the pyromat.units module contains the tools that are responsible
for converting to and from the units specified in the pyromat.config

system (see Chapter 3).
A list of all currently available units is available by typing

>>> import pyromat as pm

>>> help(pm.units)

To obtain information specific to one of the unit classes (length, for
example), type

>>> help(pm.units.length)

The unit systems used by the property methods and their corre-
sponding configuration entries are listed in Tables 1.1 and 1.2.

This chapter infuses a little history along with the information PY-
roMat users are likely to find useful when interacting with the unit
conversion system.

4.1 Unit definitions

The Bureau International des Poids et Mesures (BIPM) International
Committee for Weights and Measures (CIPM) is the entity responsible

45

for the definition of the fundamental units on which the SI system is
based. Nearly all other units in wide use are now derived from the
SI units in some way, so rigorous treatment of their formal definition
is worth some attention. There are countless web-based unit conver-
sion calculators, but few use sufficient care in the derivation of their
conversion factors to be trusted for serious work.

The second (time), meter (length), kilogram (mass), ampere (elec-
trical current), kelvin (temperature), mole (quantity), and candela (lu-
minous intensity) are the fundamental units in terms of which all other
measures are derived. Contemporary definitions for these units are
constructed so that certain important physical constants (like Plank’s
or Boltzmann’s constants) may be represented exactly with finite pre-
cision, so the conversion factors used in PYroMat are, by definition,
exact.

Before the turn of the twentieth century, the United States and the
British governments had adopted the international yard and avoirdupois
pound. This move re-defined the pound and the yard (and all those
based on them) in terms of the meter and kilogram using an exact re-
lationship with finite precision. The contemporary definitions for those
fundamental units are constructed from highly stable natural phenom-
ena may be independently reproduced in a laboratory, but this idea is
quite recent. Abandoning the tradition of defining units from a stan-
dard bar or mass did not happen until the latter half of the twentieth
century. [4]

This establishes a web of precise definitions of units for US custom-
ary, imperial, and SI systems. However, there are still popular measures
(like the inch water column for pressure or scf for quantity of a gas) that
depend on establishing so-called “standard” conditions whose precise
definitions are often neglected (and are far from standard).

For example, water and mercury column measures for pressure de-
pend on the density of a fluid and the local strength of gravity, both
of which are subject to change. So-called “standard” pressure is often
1atm (1.01325bar), but is precisely 1bar for the NIST-JANAF data.
Worse still, standard temperature usually refers to 273.15K (0◦C), but
the NIST-JANAF tables use 298.15K (25◦C), and there are some engi-
neering applications that still use 70◦F. There are at least a half-dozen

46

definitions for the calorie, which are construed from the specific heat of
water at different conditions. These inconsistencies are far too severe
to ignore, so great care is required when pulling data from multiple
sources into a single database.

4.2 Setup

To maintain transparency in regard to the standards used to derive
unit conversions, the PYroMat units system includes a setup function
that is responsible for constructing all of the unit conversion routines.
Users can inspect the constants it defines, and users may change them
at any time by re-calling the setup function with new arguments. Its
behavior is fully documented and can be found by evoking help as
below.

>>> import pyromat as pm

>>> pm.units.setup(Tstd =273.15 , pstd =1.01325 , \

... g=9.80665 , dh2o = 999.972 , dhg =13595.1)

>>> help(pm.units.setup)

It should be emphasized that there is a difference between the stan-
dard parameters used to construct the PYroMat unit system and the
default parameters determined by pm.config. The standard condi-
tions are only used to construct the unit conversion system, they are
always given in the units documented below, and they are ignored out-
side of the units module. On the other hand, the default parameters
are used in property methods when arguments are omitted, and they
are interpreted in whatever units are currently configured. See the
configuration chapter (Chapter 3) for more information.

Standard temperature and pressure, Tstd and pstd, must be en-
tered in units of Kelvin and bar respectively (regardless of the units con-
figured in pm.config). The standard atmosphere was set to precisely
1.013 25 bar by the BIPM General Conference on Weights and Mea-
sures (CGPM) in 1901 [5], and has been almost universally adopted.
The default standard temperature is less universal, but is usually 273.15
K, the freezing point of water at one atmosphere of pressure.

The CGPM did not establish a standard acceleration due to gravity
for the purpose of weights and measures until 1954. It is set to be

47

precisely 9.80665 m s−2 [6]. This is a mean of gravitational forces
experienced at sea level at a latitude of 45 degrees. This value can be
found to agree precisely with the official conversions for pounds mass,
pounds force, kilogram, and newton.

The densities of water and mercury, dh2o and dhg, must be entered
in units of kg m−3. The default for water is its density at atmospheric
pressure and 4◦C. The default for mercury is its density at atmospheric
pressure and 0◦C.

4.3 Constants

The setup function is called when the units module is first imported
to initialize the PYroMat unit constants listed in Table 4.1 and de-
clare all the unit conversion routines. These constants are used widely
throughout the PYroMat system, so altering them is only recommended
for advanced users who can anticipate the effects they will have.

Regardless of experience, constants should never be changed manu-
ally. They should only ever be changed be re-calling the setup function
since the unit conversion routines will need to be updated to reflect the
new value.

The values in this table are, by the definitions of units, exact (unless
noted with ≈). Similarly, the conversions in the following sections are
also exact unless they are otherwise noted.

48

Table 4.1: PYroMat constants and their default values. Values with a * are affected by calls to setup.

Sym. Name Value Description

g∗ const_g 9.806 65 m s−2 Gravity at 45◦ lat.

h const_h 6.626 070 15×10−34 J s Plank constant

k const_k 1.380 649 ×10−23 J K−1 Boltzmann constant

Na const_Na 6.022 140 76×1023 mol−1 Avagadro number

Nc const_Nc 6.241 509 34×1018 C−1 Electrons per Coulumb

ρstd
∗ const_nstd 44.615 048 197 83 mol m−3 Standard molar density

pstd
∗ const_pstd 1.013 25 bar Standard pressure

q const_q 1.602 176 634 ×10−19 C Fundamental charge

Ru const_Ru ≈ 8.314 462 618 J mol−1 K−1 Universal gas constant

Tstd
∗ const_Tstd 273.15 K Standard temperature

ρH2O
∗ const_dh2o 999.972 kg m−3 Std. density of water

ρHg
∗ const_dhg 1,3595.1 kg m−3 Std. density of mercury

49

4.4 Conversion Class

Unit conversions are performed by a callable Conversion class. With
the exception of the matter and temperature_scale functions (de-
scribed below), each of the conversions is performed by a callable
Conversion class instance defined by the setup function at import.

As a callable, Conversion instances mimic a function that accepts
up to five arguments,

>>> conversion_instance(value=1., from_units=None , \

... to_units=None , exponent=None , inplace=None)

The value may be a scalar or a numpy array of values to be con-
verted. By default, it is 1, so that if no value is specified, the result
will automatically be a conversion factor between the given units.

The from_units and to_units keywords accept strings identifying
the units in the conversion. In the event that one of them is omitted,
each Conversion instance is initialized to check for an entry estab-
lishing an default unit in the pm.config system. In the sections that
follow, each of the unit classes is listed with the name of its instance,
the configuration entry that identifies its default unit, and the default
that is configured in PYroMat at installation.

The exponent keyword allows for powers of units that are not unity.
For example, units of velocity are not explicitly included, but it is still
easy to convert from meters per second to miles per hour by

>>> import pyromat as pm

>>> speed_ms = 10.

>>> temp = pm.units.length(speed_ms , ’m’, ’mile’)

>>> speed_mph = pm.units.time(temp , ’s’, ’hr’,

exponent =-1)

>>> print(speed_mph)

22.369362920544024

Most users will never need the inplace keyword, but when it is set
to True and the value is a numpy array, the original values will be
overwritten with the result of the conversion.

Conversion instances also support item recall, so that the conver-
sion factor for any unit may be obtained simply

50

>>> print(pm.units.volume[’m3’] / pm.units.volume[’L’

])

1000.

This indicates that there are 1000 liters per cubic meter. Most users
will not need to use this capability, but for those that do, it is important
to always use ratios of units of the same class. Each item recall returns
a scalar value indicating the relative size of the respective unit, but
relative to what? In the case of volume, each value indicates the unit’s
value in cubic meters, but that is an arbitrary choice.

For a complete list of the supported units in a unit class, use the
get() method.

>>> pm.units.energy.get()

dict_keys ([’J’, ’kJ’, ’cal’, ’kcal’, ’BTU_ISO ’, ’eV’,

’BTU’])

4.5 Fundamental Units

Fundamental units are those that have precise definitions based on
observable phenomena in nature. They are defined by the BIPM.

4.5.1 Time

Conversion instance: pm.units.time

pyromat.config entry: ’unit_time’

Default: ’s’

To alter the PYroMat unit for time,

>>> import pyormat as pm

>>> pm.config[’unit_time ’] = ’min’

Time is the most fundamental measure defined by the BIPM. “[The
second] is defined by taking the fixed numerical value of the caesium
frequency ∆νCs, the unperturbed ground-state hyperfine transition fre-
quency of the caesium-133 atom, to be 9,192,631,770 when expressed
in the unit Hz, which is equal to s−1.”[7, p.130] Most of the other
fundamental units are constructed in terms of it.

51

Table 4.2: Time units recognized by PYroMat
Setting Value Description

year 31,536,000 s year
day 86,400 s day
hr 3,600 s hour
min 60 s minute
s 1 s second
ms 0.001 s millisecond
us 10−6 s microsecond
ns 10−9 s nanosecond

The other units of time recognized by the PYroMat system are
well known, and have simple definitions in terms of the second. It is
worth emphasizing that the year and the day recommended by NIST
[8] presume precisely 24 hours to a day and 365 days to a year. This
ignores the roughly quarter-day annual disagreement between the year
and the sidereal year (the time for the Earth to orbit the sun).

Their configuration strings, their values in terms of the second, and
their names are listed in Table 4.2.

Time is implemented in the unit conversion system for complete-
ness, but as of PYroMat version 2.1.0, it is not used directly by any of
the property methods.

Listing 4.1: Time Conversion Example

>>> pm.units.time(30, ’s’, ’min’)

0.5

4.5.2 Length

Conversion instance: pm.units.length

pyromat.config entry: unit_length

Default: ’m’

To alter the PYroMat unit for length,

>>> import pyormat as pm

>>> pm.config[’unit_length ’] = ’in’

52

“[The meter] is defined by taking the fixed numerical value of the
speed of light in vacuum, c, to be 299,792,458 when expressed in the
unit m s−1 [...].”[7, p.131] All other metric length units are trivial to
derive from the meter.

The international yard (and by extension, the inch, foot, and mile)
were defined exactly in terms of the meter before the end of the nine-
teenth century, but their contemporary values were not adopted until
the middle of the twentieth century.[4] Now one yard is defined to be
precisely 0.914 4 meters, which results in the better known relationship,
one inch is precisely 25.4 millimeters.

The meter was once defined to be a fixed ratio of a great circle
around the Earth. This made it of great use for navigation, and for
the same reason, the nautical mile is still in common use. The me-
ter was one ten millionth of one quarter of a meridian, making the
circumference of the Earth precisely 40,000 km by definition [4]. The
nautical mile was was also primarily used for navigation, but it was set
to the distance covered by one arc minute of latitude (of which there are
21,600 in a circle). Therefore, the nautical mile was exactly 40,000,000
m / 21,600 or approximately 1,851.851 85 m. In the middle of the
twentieth century, the United States Departments of Commerce and
Defense jointly declared the nautical mile to be redefined as precisely
1,852m [9].

The length scales supported by PYroMat and their values in terms
of the meter are listed in table 4.3.

Example:

>>> pm.units.length (12, ’in’, ’m’)

.127

4.5.3 Mass and Weight

Conversion instance: pm.units.mass

pyromat.config entry: unit_mass

Default: ’kg’

To alter the PYroMat unit for mass,

>>> import pyormat as pm

53

Table 4.3: Length units recognized by PYroMat
Setting Value Description

km 1,000 m kilometer
m 1 m meter
cm 0.01 m centimeter
mm 0.001 m millimeter
um 1× 10−6 m micrometer
nm 1× 10−9 m nanometer
A 1× 10−10 m Angstrom
in 0.025 4 m inch
ft 0.304 8 m foot
yd 0.914 4 m yard

mile 1,609.344 m statute mile
mi Alternate of mile
nmi 1,852 m nautical mile

>>> pm.config[’unit_mass ’] = ’lb’

“[The kilogram] is defined by taking the fixed numerical value of the
Planck constant h to be 6.62607015×10−34 when expressed in the unit
J s, which is equal to kg m2 s−1”[7, p.131]. Like many of the remaining
fundamental units, the kilogram is defined in terms of length and time,
making it dependent on their definitions as well.

The atomic mass unit (u or amu) is defined as precisely 1/12 the
mass of a carbon 12 atom at rest. However, in PYroMat the value of one
u is calculated in kilograms by enforcing that 1000 moles of a substance
with 1u of mass will have 1kg of mass. These two definitions of the
atomic mass unit are equivalent to the precision of their definition[7,
p.146].

Definitions for the pound and units derived from it are often con-
fused by conflicting definitions of the term “weight.” For example, in
NIST special publications it is possible to find “[...] the weight of a
body in a particular reference frame is defined as the force that gives
the body an acceleration equal to the local acceleration of free fall in
that reference frame”[8, p.23] and “In general usage, the term ‘weight’
nearly always means mass, and this is the meaning given the term in

54

Table 4.4: Mass units recognized by PYroMat
Setting Value Description

kg 1 kg kilogram
g 0.001 kg gram
mg 1× 10−6 kg milligram
lbm 0.453 592 37 kg pound-mass
lb Alternate form of lbm
oz 0.028 349 523 125 kg ounce
slug ≈ 14.593 902 9 kg slug
u ≈ 1.660 539 06 ×10−27 kg atomic mass unit

amu Alternate form of u

U.S. laws and regulations.” [10, p.10]
However, at the end of the nineteenth century, the definition of the

avoirdupois pound was set to a fixed fraction of the kilogram, formal-
izing the definition of the pound as a measure of mass and not force.
The distinction became important as the precision of measuring in-
struments exceeded the consistency of the strength of gravity over the
Earth’s surface. The contemporary value for the avoirdupois pound
was established in the middle of the twentieth century, and is precisely
0.453 592 37 kg of mass.[9]

The troy pound and the troy ounce predate the avoirdupois pound
as a measure primarily used for quantities of precious metal in coinage
[4, p.6], but today they are rarely used outside of these specialized
applications. They are omitted from PYroMat to avoid confusion and
because they are not often used in scientific or engineering applications.

Table 4.4 shows the mass units recognized by PYroMat and their
values in kilograms. Note that only the atomic mass unit and the
slug have been rounded. The rest of the relationships are precise by
definition.

Example:

>>> pm.units.mass(2, ’lb’, ’kg’)

0.90718474

55

4.5.4 Molar

Conversion instance: pm.units.molar

pyromat.config entry: unit_molar

Default: ’kmol’

To alter the PYroMat unit for molar quantities,

>>> import pyormat as pm

>>> pm.config[’unit_molar ’] = ’lbmol’

“One mole contains exactly 6.022 140 76 ×1023 elementary enti-
ties. This number is the fixed numerical value of the Avogadro con-
stant, Na, when expressed in the unit mol−1 and is called the Avogadro
number.”[7][p.134]. Because a mole is a unit of counting, it is equally
valid to refer to a mole of planets (about right for our observable uni-
verse) as it is to refer to a mole of gas.

The mole is the quantity of a substance with a total mass in grams
numerically equal to the mass of the elementary entities expressed in
atomic mass units (see Section 4.5.3). This relationship is mirrored by
more recently invented alternatives such as the kilogram-mole (kmol)
or the pound-mole (lbmol), which enjoy the same relationships with
their mass-based namesakes.

If the mass of a single molecule is m0, a mass, m, of many such
molecules must contain

N =
m

m0
(4.1)

molecules.
By definition, when N = Na, the mass of the group expressed in

grams will equal the mass of the molecule expressed in atomic mass
units. Therefore, the gram-mole is

Ng = Na =
1g

1u
. (4.2)

The same process may be applied for any other unit of mass, so the
quantity required for m to be expressed in kilograms is

Nkg =
1kg

1u
. (4.3)

56

Therefore,

Nkg

Ng
=

1kg

1g
= 1000. (4.4)

The moles are converted by the same conversion factors as their mass
equivalents, so a kilogram-mole contains precisely 1000 times as many
elementary particles as the gram-mole. To express a quantity, N , in
molar units, its quantity only needs to be divided by the quantity of
the corresponding mole type. For example, in kilogram moles,

N =
N

Nkg
. (4.5)

For describing quantities of a gas, standard (or normal) volumetric
units are used so widely that the problematic aspects of their definitions
are worth tolerating. A standard (or normal) volume is the quantity
of an ideal gas that would occupy that volume at standard conditions.
US Customary and imperial units use the word “standard” and metric
units use the word “normal,” but the meaning is the same.

Regardless of the mass of the elementary particles, an ideal gas has
a consistent number density (concentration) at given conditions,

ρstd =
pstd

RuTstd
, (4.6)

given in mole count per unit volume. Obviously, precise and consis-
tent definitions for standard conditions are essential here. By default
PYroMat uses pstd = 1.013 25 bar and Tstd = 273.15 K. When ρstd is
expressed in gram-moles per cubic meter, it is approximately 44.615
033 4.

To calculate the number of moles in a standard volume, one need
only multiply by the volume in question. So, a normal liter contains
.044 615 033 4 moles (when standard temperature and pressure are as
above).

Table 4.5 shows the molar units and their values expressed in kilogram-
moles. The values marked with ∗ are dependent on the standard con-
ditions provided when setup() was last called.

Even though the mole is the BIPM standard for quantity of a sub-
stance, PYroMat uses the kmol or kilogram-mole as the default molar

57

Table 4.5: Molar units recognized by PYroMat
Setting Value Description

kmol 1 kmol kilogram-mole
mol 0.001 kmol gram-mole
lbmol 0.453 592 37 kmol pound-mole
n ≈ 1.660 539 06 ×10−27 kmol count

Nm3∗ ≈ 0.044 615 033 4 kmol normal cubic meters
Ncum∗ Alternate form of Nm3
NL∗ ≈ 44.615 033 4×10−6 kmol normal liters
Ncc∗ ≈ 44.615 033 4×10−9 kmol normal cubic centimeters
scf∗ ≈ 0.001 263 357 06 kmol standard cubic feet
sci∗ ≈ 0.731 109 408 ×10−6 kmol standard cubic inches

unit for self consistency. For example, the molecular weight property
methods return mass per molar units. If the mass units were set to kg
and the molar units were set to mol, then the molar mass of diatomic
nitrogen would be reported as something near 28,000. Setting the two
consistently prevents this unusual result.

Example:

>>> pm.units.molar (1.5, ’scf’, ’kmol’)

0.0018950355849594869

4.5.5 Matter

Function: pm.units.matter

pyromat.config entry: unit_matter

Default: ’kg’

To alter the PYroMat unit for matter quantities,

>>> import pyormat as pm

>>> pm.config[’unit_matter ’] = ’lbm’

Molar and mass units provide parallel methods for quantifying
amounts of matter. Thermodynamic properties can be expressed in
either, so PYroMat uses a third class of units, matter, which is an
amalgamation of all molar and mass units. A unit matter may be any

58

of the units listed in Tables 4.4 and 4.5. Since every molar unit can
be related to the kilogram-mole and every mass unit can be related to
the kilogram, it is only important that we establish how the kilogram
is related to the kilogram-mole.

The ratio between kilograms and kilogram moles is a property of
the molecule, and is called its molar or molecular weight, W . It is
typically expressed in terms of atomic mass units per molecule, but it
is the same in kilograms per kilogram moles. The mass, m of a molar
quantity, N , in kilogram moles then, is

m = NW. (4.7)

Unlike any of the other unit conversions, this one depends on the
properties of the substance itself. As a result, it is implemented in a
custom function that adds molecular weight (in u per molecule), mw, as
a mandatory argument in addition to the other standard Conversion

arguments.

>>> matter(value , mw , from_units=None , \

... to_units=None , exponent=None , inplace=False)

If the to- and from-units are in the same molar or mass class, then
the function merely calls the appropriate Conversion instance.

These examples consider a molecule with molecular weight exactly
2.0 u (H2):

>>> import pyromat as pm

>>> pm.units.matter(1, 2, ’kg ’, ’kmol ’)

0.5

>>> pm.units.matter(1, 2, ’kg , ’lbmol ’)

1.1023113109243878

>>> pm.units.matter(1,2,’kg ’,’lb ’)

2.2046226218487757

>>> pm.units.mass(1, ’kg ’, ’lb ’)

2.2046226218487757

59

4.5.6 Temperature

Conversion instance: pm.units.temperature

Scale function: pm.units.temperature_scale

pyromat.config entry: unit_temperature

Default: ’K’

To alter the PYroMat unit for temperature quantities,

>>> import pyormat as pm

>>> pm.config[’unit_temperature ’] = ’K’

This history of temperature as a measure of hot and cold extends
back longer than thermodynamics as a rigorous theory. Without know-
ing what underlying principles caused substances to be hot or cold, a
Celsius scale could still be reliably constructed on a thermometer by
marking its readings in ice water and boiling water and by dividing the
space between into one hundred equal increments.

With the discovery that temperature indicates the mean transla-
tional kinetic energy of the molecules of an ideal gas, the kinetic theory
of gasses gives the relationship,

1

2
m0

⟨
u2
⟩
=

3

2
kT. (4.8)

The coefficient, k, which is now known as Boltzmann’s constant, es-
tablishes the proportionality between kinetic energy and temperature.
This also provides the idea of an absolute temperature scale; one in
which zero temperature corresponds to zero energy rather than an ar-
bitrary choice (like the freezing point of water at standard pressure).
In this way, Boltzmann’s constant completely determines an absolute
temperature scale in terms of the other units.

The BIPM stipulates that “[the kelvin] is defined by taking the fixed
numerical value of the Boltzmann constant k to be 1.380649 × 10−23

when expressed in the unit J K−1, which is equal to kg m2 s−2 K−1

[...]”[7, p.133] This makes the value for the Boltzmann constant exact
by definition.

The realization that temperature is a measure of certain portions
of a system’s energy is especially useful in plasma physics and related
fields. In these studies, it is useful to express temperature directly

60

as an energy, or electron-volts (eV). The temperature of a substance
expressed in electron-volts is the electrical potential that can be built
up due to thermal motions of electrons, and is equal to kT/q, when q
is the fundamental charge.

The rankine scale is the US customary and imperial equivalent to
the kelvin, with one 1.8 R per 1 K. The Celsius scale uses the same
increments as the kelvin scale, but its zero is set 273.15 K, the freezing
point of water at 1 atmosphere. The Fahrenheit scale uses the same
increment as the rankine, but its zero is set so that the freezing point
of water at standard pressure occurs at precisely 32◦F.

Scales with offsets defy the unit conversion rules implemented by
the Conversion instance; that all measurements can be converted be-
tween the units merely by multiplying by a factor. Obviously, when
converting values for a temperature, it is important to handle these
offsets correctly, but when considering derivatives involving tempera-
ture or other changes in temperature, the offsets must be ignored. As
a result, there are two temperature-based unit conversion tools.

The pm.units.temperature is a Conversion instance and should
only be used in cases where changes or derivatives in temperature are
being considered (e.g. in specific heat or entropy). In these cases,
offsets can be ignored, and the conversion factor rules are observed.

When temperatures are being converted between scales so that the
offsets between themmust be respected, the pm.units.temperature_scale
function should be used instead. It is a function that mimics the
Conversion call signature, but that is specially written to handle tem-
perature scales.

>>> pm.units.temperature_scale(value , \

... from_units=None , to_units=None ,\

... inplace=False)

Just like the Conversion instances, it respects the unit_temperature
configuration parameter for any unspecified units. However, it makes
no sense to refer to a temperature scale with any exponent other than
1, so the exponent parameter is absent.

The temperature scales and their respective differential values in
kelvin are listed in Table 4.6. Note that the offsets are not included in
this table.

61

Table 4.6: Temperature units recognized by PYroMat
Setting Value Description

K 1 K kelvin
C 1 K degree Celsius
R 5/9 K rankine
F 5/9 K degree Fahrenheit
eV ≈ 86.173 332 6 ×10−6 K electron-volt

Examples:

>>> pm.units.temperature (2, ’C’, ’F’)

3.6

>>> pm.units.temperature_scale (2, ’C’, ’F’)

array (35.6)

4.6 Derived Units

Derived units are ones that are defined in terms of the fundamental
units. They have no fundamental definition in nature, but are instead
calculated in terms of the fundamental units.

4.6.1 Force

Conversion instance: pm.units.force

pyromat.config entry: unit_force

Default: ’N’

To alter the PYroMat unit for force quantities,

>>> import pyormat as pm

>>> pm.config[’unit_force ’] = ’kgf’

Force is a concept that originates with Newton’s laws of motion,
so it is fitting that the principle force unit be called the Newton. It
is equivalent to one kg m s−2 [7, p.137], corresponding to mass times
acceleration.

Force units that are derived from measures of mass (like kilogram-
force and pound-force) can be calculated in terms of Newtons by cal-

62

Table 4.7: Force units recognized by PYroMat
Setting Value Description

N 1 N newton
kN 1,000 N kilonewton
lbf∗ ≈ 4.448 221 62 N pound-force
lb∗ Alternate for lbf
oz∗ ≈ 0.278 013 851 N ounce

culating their weight (in Newtons) under Earth gravity. These units
depend on the value assigned to g in the last call to setup() (see
Section 4.2 of this chapter).

Table 4.7 lists the supported force units and their values in Newtons.

4.6.2 Energy

Conversion instance: pm.units.energy

pyromat.config entry: unit_energy

Default: ’kJ’

To alter the PYroMat unit for energy quantities,

>>> import pyormat as pm

>>> pm.config[’unit_energy ’] = ’kcal’

The Joule is the SI measure of energy, and it is defined as one N m,
or one kg m2 s−2 [7, p.137]. The calorie is of historical importance to
the scientific community, but its use has fallen out in favor of the Joule.
The British thermal unit (BTU) is still broadly used in some industries
(especially heating and refrigeration), but few authoritative definitions
for unit systems recognize either in their contemporary standards.

The calorie has a number of alternate definitions that has made
the unit somewhat problematic. One set of definitions is the energy
required to raise a gram of water one degree Celsius at different “stan-
dard” conditions. Another is 1/100 of the energy required to raise a
gram of water from its ice point to boiling at atmospheric pressure. In
1956, the Fifth International Conference on the Properties of Steam
set the “international table calorie” to be precisely 4.1868 J. The calo-
rie in broadest contemporary use is the thermochemical calorie, which

63

Table 4.8: Energy units recognized by PYroMat
Setting Value Description

J 1 J joule
kJ 1,000 J kilojoule
cal 4.184 J calorie
kcal 4,184 J kilocalorie
BTU ≈ 1,054.350 26 J British thermal unit
eV 1.602 176 634 ×10−19 J electron-volt

seems to be universally understood to be precisely 4.184 J [8], though
an original source for that definition is difficult to find. Because it
is the unit adopted by the International Unions of Pure and Applied
Chemistry and Physics (IUPAC and IUPAP) [11] PYroMat also adopts
the thermochemical calorie.

Whatever definition is used for the calorie, the BTU may be derived
from it by adjusting the quantity of water to be one pound and the
temperature rise to be one degree Fahrenheit. The BTU so derived
from the thermochemical calorie is approximately 1,054.350 26 J.

It is important to emphasize that it is difficult to find contemporary
authorities that certify the BTU or calorie for commercial use. The ISO
standard that historically defined the calorie (ISO 31-4) was withdrawn
and superseded by ISO 80000-5, which makes no mention of the calorie
or the BTU. NIST’s special publication number 811 from which the
conversion is lifted specifically lists the calorie as an “unacceptable
unit.”

Finally, the electron-volt is the energy required to move a single
electron through a one volt potential. It is expressed in Joules as 1V
×q.

4.6.3 Pressure

Conversion instance: pm.units.pressure

pyromat.config entry: unit_pressure

Default: ’bar’

To alter the PYroMat unit for pressure quantities,

64

>>> import pyormat as pm

>>> pm.config[’unit_pressure ’] = ’Pa’

Pressure is a force exerted per unit area. In addition to its typical
use describing fluid forces on surfaces, pressure units are also used to
describe stresses and surface loads in solids. The SI unit for pressure
is the pascal, which is defined as one kg m−1 s−2 [7, p.137]. The bar
is precisely 100,000 Pa, and is in broad use thanks to its proximity to
atmospheric pressure.

The “standard atmosphere” was adopted by the (CGPM) in 1954 to
be precisely 101,325 newtons per square meter [6]. It is intended to be
indicative of a global mean barometric pressure (adjusted to sea level).
This definition is in broad use both scientifically [11] and commercially
[8] as value of one atm. The standard atmosphere can be adjusted
using the pstd parameter of setup (see Section 4.2 of this chapter).

Liquid column units for pressure are defined as the increase in pres-
sure observed beneath a column of liquid of some height. Like bourdon
tube gauges, these pressures are measured relative to the ambient, and
are also sometimes called gauge pressure. Provided sufficient measures
are taken to avoid the impacts of meniscus, the liquid column pressure,
p, may be calculated for a liquid with mass density, ρ, under a uniform
gravitational acceleration, g, with a column height, h,

p = ρgh. (4.9)

For measures of high precision, it is obviously necessary to define a
standard gravity and standard densities for the column fluids.

By default, PYroMat uses the acceleration of free fall in Earth grav-
ity, g, to be precisely 9.8065 m s−2. This value was internationally
adopted in 1901 by the third General Conference on Weights and Mea-
sures (CGPM)[5] and is still in broad use as a “standard” value [10,
p.45] [8, p.5]. However, it should be emphasized that actual pressures
produced by liquid columns will vary significantly with altitude, prox-
imity to dense geological formations, and especially latitude.

It is common to calculate the mmH2O with a convenient and easy-
to-remember 1,000 kg m−3 water density. The so-called 4◦C mmH2O
is based on a water density of 999.972 kg m−3, which is close enough to
the convention for most purposes. However, actual water density in the

65

“ambient” range 20◦C to 25◦C can be as low as 997 kg m−3, so practical
realizations of this unit in a laboratory setting are unlikely to ever be
more precise than 0.3%. By default PYroMat uses the 4◦C mmH2O,
but users may change this convention by altering the dh2o parameter
in the setup function (see Section 4.2 of this chapter). When in doubt,
users should calculate their own water column pressures in Pa or bar
based on the known conditions in the lab.

There is also a variety of conventional values established around
the mmHg column. The definition most commonly used is the 0◦C
mmHg, which is adopted by PYroMat by default. A density of 13,595.1
kg −3 for mercury with the above value for g results in a conversion
factor identical to the value officially adopted by NIST [8, p.52] to the
precision given.

Because they are identical to practical precision, the Torr and the
mmHg are often treated as identical units, but there is a difference in
definition. The Torr is defined so that 1 atm is precisely 760 Torr. As
seen in Table 4.9, they are not quite identical, but they are so close, few
practical measurements will ever mandate a distinction. However, the
distinction means that the Torr does not depend on the choice for the
density of mercury or gravity. Instead, it only depends on the definition
of the standard atmosphere.

As mentioned above in the discussion on water column, “gauge”
measurements of pressure are often made relative to the ambient con-
ditions. These kinds of pressures should never be used in thermo-
dynamic calculations, so to avoid confusion, PYroMat only works in
“absolute” pressure, which is actual force per actual area. To con-
vert back-and-forth between absolute pressure and the gauge measure-
ments that are easier in the laboratory, the units module includes
the abs_to_gauge() and gauge_to_abs() functions. See their in-line
documentation for more information.

4.6.4 Volume

Conversion instance: pm.units.volume

pyromat.config entry: unit_volume

Default: ’m3’

66

Table 4.9: Pressure units recognized by PYroMat. Values with a * are
affected by calls to setup().

Setting Value Description

Pa 1 Pa pascal
kPa 1,000 Pa kilopascal
MPa 1,000,000 Pa megapascal
bar 100,000 Pa bar
atm∗ 101,325 Pa atmosphere
Torr∗ ≈ 133.322 368 Pa Torr
mmHg∗ ≈ 133.322 387 Pa mm mercury column
inHg∗ ≈ 3,386.388 64 Pa inches mercury column
mmH2O∗ ≈ 9.806 375 41 Pa mm water column
inH2O∗ ≈ 249.081 936 Pa inches water column
psi ≈ 6,894.757 29 Pa pounds per square inch
ksi ≈ 6,894,757.29 Pa kips per square inch
psf ≈ 47.880 259 0 Pa pounds per square foot

To alter the PYroMat unit for volumetric quantities,

>>> import pyormat as pm

>>> pm.config[’unit_volume ’] = ’gal’

Volume is the measure of the size of a region in space. SI volumetric
units are entirely derived from cubes of the linear units, with the liter
being equivalent to 0.001 m3.

Historically the English units for fluid ounce, pint, quart, and gallon
were based on the volume occupied by specific weights of water. The
English wine gallon was first implemented in 1707 as precisely 231 cubic
inches, which was quite close to the gallon based on quantities of water.
Though the United Kingdom abandoned it in 1824, it was adopted as
the official gallon by the United States Treasury Department in 1832 [4,
p.]. Today, the US gallon is still defined as precisely 231 cubic inches.

The Imperial gallon, which the UK and Canada adopted in place of
the wine gallon, was the volume occupied by 10 pounds of liquid water
at atmospheric conditions. Today, the imperial gallon is precisely 4.546
09 liters, which is roughly consistent with its original definition.

The system of US liquid quart (1/4 gallon) and liquid pint (1/8 gal-

67

Table 4.10: Volumetric units recognized by PYroMat
Setting Value Description

cum 1 cum cubic meter
m3 Alternate for cum
cc ×10−6 cum cubic centimeter
cm3 Alternate for cc
cumm 1 ×10−9 cum cubic millimeter
mm3 Alternate for cumm
L .001 cum liter
mL 1 ×10−6 cum milliliter
uL 1 ×10−9 cum microliter
cuin 0.163 870 64 ×10−5 cum cubic inch
in3 Alternate for cuin
cuft 0.028 316 846 591 cum cubic foot
ft3 Alternate for cuft
USgal 0.003 785 411 783 cum US gallon
gal Alternate for USgal
qt 0.946 352 946 ×10−3 cum liquid quart
pt 0.473 176 473 ×10−3 cum liquid pint

UKgal 0.004 546 09 cum imperial gallon

lon) follow from the definition of the gallon, but it should be emphasized
that there is a vast and nuanced system of specialized volumetric units
that are not included in PYroMat (e.g. fluid ounce, dry quart, dry int,
bushel, etc.). This decision is primarily to avoid confusion, but also to
keep the focus on units of relevance to the engineering and scientific
community.

Table 4.10 shows the volumetric units recognized by PYroMat.

68

Chapter 5

The PYroMat modules

The core of PYroMat’s functionality is split across four modules; reg,
dat, utilty, and units. The units module already has its own chap-
ter (Chapter 4), so this chapter is devoted to a description of the back-
end and how it retrieves the models and their data.

When the PYroMat package is first imported, the load process is
completed in three steps: (1) configuration, (2) registry, and (3) data.
In the configuration stage, PYroMat loads configuration files, which
are described in detail in Chapter 3. In the registry stage, PYroMat
searches for Python code that defines the classes that handle the sub-
stance models. Finally, in the data stage PYroMat searches for the
*.hpd files that define the substance data.

5.1 The class registry module, reg

The reg module only has three members of interest to a user; the
registry dictionary, the regload function, and the __basedata__

class. As a module, reg is responsible for maintaining the reg.registry
dictionary, which contains all of the classes that provide the substance
models. Each entry of this dictionary is a child class of the reg.__basedata__
class. The key for each member of the dictionary is the same as its name
and serves as the string used to identify the class. For example, in the
default installation, reg.registry[’ig2’], recalls the ig2 class, so
’ig2’ can be used as a value for the class entry of a data file.

69

When PYroMat is first imported, it calls reg.regload() with no
arguments, which causes it to discover a list of possible registry directo-
ries from the config[’reg_dir’] entry. If the config[’reg_recursive’]
is set to True, the reg.regload() function will also descend into sub-
directories. Calling reg.regload() at any time causes it to repeat this
process. See the in-line documentation for how reg.regload() argu-
ments can be used to override configuration entries when manually
repeating the registry load process from the command line.

Great care should be taken when specifying potential registry direc-
tories. The reg.regload() function executes all Python codes in the
registry directories to check for definition of reg.__basedata__ classes,
so registry directories that define codes globally (for all users) should
be protected just like system files, and users should be disallowed from
loading each other’s registries.

5.2 The data module, dat

The dat module is responsible for maintaining the dat.data dictionary
of all available substance models. It includes tools to discover, load,
and manipulate the model data. The data dictionary is where get()

finds the substance instances requested by the user.

5.2.1 The load() function

The dat.load() function is the most important of dat’s functions. It
is responsible for loading all of the substance data and creating the
class instances with which users will interact. When PYroMat is first
imported, dat.load() is called with no arguments, which prompts it to
discover a list of possible data file directories from config[’dat_dir’].
Every file with a .hpd file extension is loaded and used to initialize an
appropriate class instance. Each instance is added to the dat.data

dictionary with its “id” as the keyword string. See section 5.2.2 for
more information.

When it is called with a directory or a path to a specific file,
dat.load() will only open the contents of that directory or that file.
This is useful for manually adding or re-loading files under development

70

that are not yet in the data directories listed in config.
The dat.load() function also has an optional keyword, check, that

prompts a data file integrity check when set to True. When run in check
mode, dat.load() returns a dictionary with six entries describing the
results of the load process. If a user has changed the data contained in
the dat.data dictionary, added a new element, or deleted an existing
element, it will be discovered by comparing the current data dictionary
against a repeated load process.

>>> import pyromat as pm

>>> # This does NOT affect pm.dat.data

>>> result = pm.load(check=True)

>>> result[’changed ’] # modified substances

>>> result[’added’] # new substances

>>> result[’removed ’] # substances removed

>>> result[’redundant ’] # redundant files

>>> result[’suppressed ’] # excluded files

>>> result[’data’] # new data dict

The changed, added, and removed elements of the result dict are
lists of id strings for the species that are affected. This lets developers
carefully inspect the impermanent changes they have made to the data
during a command line session.

The redundant dictionary member is a dictionary of substance ids
with more than one definition found in the bank of *.hpd files. This
happens often when multiple data sources have their own contradictory
models for the same substances. The keys to the redundant dictionary
are the substance ids, and the values are lists of paths to the multiple
files that specified the same substance id.

The suppressed dictionary member is a list of paths to files in the
search path with a *.hpd file extension. These files that have been
removed from the load process (probably to resolve a redundancy), but
that the user may want to be able to locate to re-activate them.

See section 5.2.3 for advanced tools for working with this informa-
tion.

71

Table 5.1: Required data keywords in all PYroMat files
Keyword Type Description

’id’ str The string used by the get function
to recognize the species and its col-
lection. It should be in the format
<collection>.<formula>

’class’ str The string name of the class from the
reg module that will be used to inter-
pret the data.

’doc’ str A long string that is used to describe
the data and cite its original source.

’atom’ dict A dictionary with element symbols for
keywords, and the numerical quantity
per molecule of each for values. This is
used by info to search for species by
contents. It can also be useful for cal-
culating the molecular weights of iso-
topes.

5.2.2 Data files

Files are in the JavaScript Object Notation (JSON) data format, which
only requires an ASCII character set, so any UTF-N extension will do.
The file should define a dictionary with keyword names the describe
the essential data elements of the substance. The sections in Chapters
6 and 7 describe the various substance classes and their required data
elements, but there are also certain basic keywords used by PYroMat
itself.

5.2.3 Tools for working with data files

For users who want to develop their own models or change existing
models, the dat module includes tools to make that easier.

The dat.clear() function empties the current dat.data dictio-
nary. Since successive calls to dat.load() merely overwrite or add to
the dictionary, if users really want to start from scratch, they should

72

call dat.clear() before running dat.load().
The dat.new() function creates a new entry in the dat.data

dictionary from a dictionary like one that might be loaded directly
from a *.hpd file. The intent is to allow users to write scripts that
build their own data dictionaries from scratch, test them in PYroMat
and only save them permanently when they have been tested.

The dat.updatefiles() function runs dat.load() in check mode
and allows the user to resolve differences between the current members
of the dat.data dictionary and the currently available data files. When
run verbosely, the user will be prompted with a choice of actions for
each file. When run with the verbose=False, it will automatically
operate on all findings. See the inline documentation for more infor-
mation.

5.3 The utility module, utility

The utility module is a container for a number of back-end code to
which users should not need direct access. For example, it is where
all of the PYroMat error types are defined, and there are a number of
back-end helper functions.

5.3.1 PYroMat error types

There are special error types defined to be unique to PYroMat. These
are intended to help users write their own scripts with meaningful ex-
ceptions when things go wrong. Table 5.2 shows all of the error types
and describes their use.

5.3.2 Redundancy tools

The utility.revive_file() and utility.suppress_file() auto-
matically add or remove a ‘ ’ at the end of a file extension to add it to
or remove it from the load process. The utility.red_repair() is an
automatic interactive file redundancy repair function that calls these
if necessary. Interested users can read their inline documentation for
more information.

73

Table 5.2: PYroMat error types
Error Type Description

PMAnalysisError A numerical routine has failed. This
probably means that an iteration has
not converged or a calculation gave an
unexpected illegal result. These are
very unusual.

PMDataError A substance data set is corrupt. This
usually appears when a required data
element is not defined or the data are
incorrect data types. Not all of these
errors are handled gracefully, so the
property methods may simply crash
with a basic Python exception.

PMFileError There was an error working with a file.
This is probably because the user does
not have permission to work one of the
*.hpd files.

PMParamError There was a problem with an argu-
ment passed to a method or function.
This is common when the user speci-
fies a state out of the model’s range or
some otherwise invalid combination of
properties.

74

5.3.3 Other tools

The utility module is also where messaging and error handling helper
functions, print_lines(), print_warning(), and print_error() re-
side. These automatically add line breaks and headers in appropriate
locations so all terminal communication will be in a standard format.

Finally, load_file() is a helper function that does back-end work
for the dat.load() function. It is a wrapper function that loads and
checks the json code from data files, and it returns the dictionary
they create. The dat.load() is responsible for passing them to the
appropriate class initializer and adding them to the data dictionary.

75

Chapter 6

Ideal Gases

The ideal gas is one in which bombarding molecules do not exert signif-
icant forces on each other except in collisions. Under these conditions,
the distance between molecules (the gas’s density) is unimportant for
determining thermodynamic properties. Only the gas’s temperature
(the speed of the molecules) is important. It is worth emphasizing
that transport properties (like conductivity and diffusivity) are still
impacted by density.

There are two classes in PYroMat that implement the two most
widely used models: the ig class manages the Shomate equation of
state, and ig2 manages the so-called NASA polynomials equation of
state. In either case, constant-pressure specific heat, cp, is constructed
purely as a function of temperature. Here, we re-develop the ther-
modynamic properties from first principles to demonstrate how cp is
sufficient to calculate them.

76

6.1 Properties of ideal gases

6.1.1 Ideal gas law

When they are spread so sparsely that forces between molecules are
small, ideal gases are well described by the relations

p = nkT (6.1a)

p = ρRT (6.1b)

p = ρRuT. (6.1c)

Here, p and T are the pressure and temperature of the gas. The den-
sities are expressed in number density, n, mass density, ρ, and molar
density, ρ. It is clear, then, that the Boltzmann constant, k, and the
ideal gas constants, R and Ru, are related,

kNa = RW = Ru. (6.2)

The Boltzmann constant is exact by definition thanks to the contempo-
rary definition of temperature (see Section 4.5.6), so this relationship
provides the authoritative definitions for the gas constants, R, and Ru.

The ideal gas law is empirical in its origins. It was originally for-
mulated as an amalgamation of the independent laws of Gay-Lussac,
Charles, and Boyle. The kinetic theory of gases eventually provided
an independent formulation based entirely in Newton’s laws. Given its
importance to the study of matter and its deeply intuitive nature, it is
surprising that virtually no introductory text on thermodynamics gives
the subject any treatment. It is worth a brief summary here.

First, let us take that a gas is comprised of molecules that translate
freely in space. They may be imagined to follow straight paths of
constant velocity unless they collide with a containing wall or another
molecule.

Pressure, then, is due to a series of impacts on a surface so rapid
that they appear to be continuous. Pressure only has meaning as a
property when the density of molecules is sufficiently high that their
individual impacts are imperceptible. That means that pressure is a
kind of average force determined by a series of may individual random
impacts. It is possible to quantify its magnitude by describing the

77

individual impacts through Newtonian mechanics. If the forces due
to a series of impacts in time is F (t), a surface with area, A, will
experience a pressure, p, based on the rate of increase of total impulse,

p ≡ 1

At

∫ t

0
F (τ)dτ. (6.3)

This formulation should have a well defined limit when t is larger than
period between individual impacts and shorter than the period over
which the local properties change.

In a Cartesian coordinate system with z normal to a surface and
positive into the surface, the velocity of any single molecule will have
three components, u⃗1 = uxî+uy ĵ+uzk̂. After an elastic collision with

the surface, the velocity will be u⃗2 = uxî+ uy ĵ − uzk̂.
The impulse imparted to the surface by one such collision will be∫ t

0
Fdτ = 2muz, (6.4)

when m is the mass of the molecule. When collisions occur due to
many identical molecules, their impulses accumulate∫ t

0
Fdτ = 2m (uz,1 + uz,2 + uz,3 + . . .)

= 2m
∑
i

uz,i (6.5)

Note that for a molecule to collide with the surface, its z-component
velocity before the collision, uz, must be positive. This results in a
purely positive force (into the surface). Ideal gas molecules experienc-
ing elastic collisions have no mechanism to pull on the surface.

The next step to predict the force on the surface requires a pre-
diction for the rate at which collisions occur. Because faster moving
molecules will travel more distance in the time interval, their collisions
will be more numerous. Let the number density of molecules with z-
component velocity between uz and uz +duz be n′(uz)duz. Here, n

′ is
a population density function for a population of molecules based on
one component of their velocity. So, n′ has units number per volume

78

per velocity, and its integral over all velocities is precisely n, the total
number density of molecules.

The number of molecules with a certain velocity that will strike an
area, A, in time t will be determined by the size of the volume that
can be traversed by molecules traveling at that velocity. Molecules
traveling with z-component velocity uz will traverse a length uzt in
the time interval. So, the total volume occupied by molecules with
that velocity that will strike the surface is Atuz. The total number of
collisions is Atuzn

′(uz)duz. So, the impulse becomes∫ t

0
Fdτ = 2m

∫ ∞

0
Atuz

2n′(uz)duz

= mAt

∫ ∞

−∞
uz

2n′(uz)duz (6.6)

Note that only half of the gas’s population will have a velocity compo-
nent in the positive direction, and the other half will not cause pressure.
Therefore, the 2 coefficient is canceled when the bounds of the integral
are extended to include all molecules.

The integral is merely a calculation of the average value of uz
2 over

the population of molecules, and may be simplified to n⟨uz2⟩ when n
is simply the total number density of the molecules and ⟨uz2⟩ is the
mean square of z-component velocity. Finally, we have obtained an
expression for pressure in terms of the outward velocity component,

p = mn⟨uz2⟩. (6.7)

The last simplification to this relationship comes when we assert
that gas velocity statistics are isotropic; velocity statistics are the same
in all directions and do not depend on the coordinate system. That
implies that ⟨ux2⟩ = ⟨uy2⟩ = ⟨uz2⟩, so

⟨u⃗2⟩ = ⟨ux2 + uy
2 + uz

2⟩ = 3⟨uz2⟩. (6.8)

Therefore, pressure is proportional to the mean square of molecular
translational velocity,

p =
1

3
mn⟨u2⟩. (6.9)

79

When this relationship is substituted into the ideal gas law above, it
provides a purely mechanical interpretation for temperature as well,

⟨1
2
mu2⟩ = 3

2
kT. (6.10)

Temperature is a measure of the average thermal energy of the gas.
Higher temperature means higher kinetic energy, and the Boltzmann
constant relates the two.

This development was quick and it neglects to address mixtures of
molecules of different masses. However, the same approach may be
used quite intuitively to show that Dalton’s law for partial pressures
also follows from these basic assumptions.

6.1.2 Internal energy

What happens to heat and work as they are added to an ideal gas
depends on the structure of the gas molecule. If there are chemical,
atomic, or phase changes, the species can be modeled as vanishing and
being replaced by a new substance with its own properties. The ideal
property models are, therefore, concerned with how energy is stored
in a molecule that is neither changing its fundamental structure nor
changing phase. This remaining energy will be exhibited entirely as the
thermal energy in (6.10) and internal vibration, rotation, or electrical
motions inside the molecule, for which we have not yet accounted.

Perfect gases are ideal gases, but not all ideal gases are perfect.
The molecules of an ideal gas collide elastically and have no further in-
teractions with their surroundings. However, the molecules of a perfect
gas are further assumed to neither spin nor vibrate. As a result, any
molecule more complicated than a single atom does not form a perfect
gas.

When a gas composed of a monoatomic molecule like argon is heated
(without atomic, chemical, or phase changes) the energy can only be
stored in the thermal translational energy described in (6.10). A sample
of N molecules of such a gas would have thermal energy N 3

2kT , so the

80

energy of one kmol or one kg is

e− e0 = Nkg
3

2
kT =

3

2
RuT (6.11)

e− e0 =
Nkg

W
kT =

3

2
RT. (6.12)

See section 4.5.4 for definitions of the molar mass, W , and kilogram-
mole count, Nkg. Here, e0 is the internal energy due to the atomic,
chemical or phase changes we have not yet considered. Note that the
gas constants, Ru and R, appear naturally in terms of the Boltzmann
constant, k.

Non-perfect ideal gases are made of more complicated molecules,
and they can store energy in more complicated ways; they vibrate, they
rotate (spin), and they have means of storing energy electrically. They
do this because the can; they have more degrees of freedom.

The 3 in (6.12) first appeared in (6.8) because all ideal gases are free
to translate in three directions. These three thermal degrees of freedom
are the only ones that contribute to measurements of temperature, but
complex molecules have more degrees of freedom that do not involve
translation through space of the molecule’s bulk. If these are included
in the internal energy as well, a molecule that is free to vibrate, rotate,
and translate in nf degrees of freedom will have an internal energy

e− e0 =
Nkg

W

nf

2
kT =

nf

2
RT. (6.13)

The intuitive assumption might be that nf is constant and a prop-
erty of each molecule. This assumption implicitly asserts that all modes
of vibration, rotation, and translation have an equal fraction of the to-
tal energy so it is called the equipartition assumption. It results in an
elegant formulation, but this is tragically a case of profound theoretical
beauty that completely fails to predict the actual behavior of molecules
in gases.

Instead, it is necessary to stipulate that nf is a statistical quantity
that can change with the state. It can be thought of as the number of
“active” degrees of freedom of each molecule. Its minimum is 3, but
it can increase to a maximum that will depend on the complexity of
the molecule and the energy of the collisions it endures. For example,

81

at very low temperatures, molecules may not vibrate much; instead
they may just bang around and spin like rigid bodies (see Figure 6.1
below). However, at higher temperatures, there may be enough energy
to excite vibrations inside the molecules.

Fortunately, since all ideal gases (perfect or not) are presumed to
collide elastically, the equilibrium distribution of energy should de-
pend on neither the rate of collisions nor the distance separating the
molecules. Obviously, this assumption will break when molecules are
packed in closely with one another (like in a liquid), but when it holds,
the active degrees of freedom is only be a function of temperature.

e(T)− e0 =
nf (T)

2
RT (6.14)

Better insights into the behavior of nf will be seen when we examine
specific heats below.

6.1.3 Enthalpy

As established above, we will construct all of the properties of the ideal
gas in terms of its specific heat, but in order to derive reliable relations
for the specific heats, it is important to first re-examine enthalpy.

Recall from Section 1.1.8 that the definition for enthalpy is e+ pv.
For an ideal gas, pv may be substituted with RT , so an ideal gas will
have enthalpy

h(T) = e(T) +RT. (6.15)

For all ideal gases, enthalpy and internal energy are only functions
of temperature, and they are related by RT .

6.1.4 Specific heats

Recall from Section 1.1.12 that the constant-volume and constant-
pressure specific heats are

cv =

(
∂e

∂T

)
v

cp =

(
∂h

∂T

)
p

82

Because both internal energy and enthalpy are only functions of
temperature, this relationship is relatively simple,

cv =
nf (T)

2
R

(
1 + T

n′
f (T)

nf (T)

)
≈

nf (T)

2
R (6.16)

cp = cv +R (6.17)

The approximation in (6.16) only holds when nf (T) is very nearly
constant.

Figure 6.1 shows the quantities 2cv/R for six gases with increasing
molecular complexities. Monoatomic He and Ar are perfect gas models,
so they behave precisely as predicted with exactly three degrees of
freedom. Meanwhile, all four polyatomic molecules start with quasi-
rigid motion at low temperatures before adopting higher degrees of
freedom at high temperatures.

For H2O, rigid motion means six degrees of freedom: three coordi-
nates of translation and three axes of rotation. For diatomic molecules
like O2 and N2, however, their symmetry robs them of one of their
axes of rotation, so they only exhibit five degrees of freedom at low
temperatures. Since CO2 is also an axisymmetric molecule, it can be
seen asymptotically approaching 5 at low temperatures as well.

6.1.5 Entropy and enthalpy revisited

Recall from Section 1.1.9 that the entropy of a pure substance changes
like

Tds = dh− vdp.

For the ideal gas, this can be simplified by substituting RT/p for v and
integrating to obtain

s− s0 =

∫
cp(T)

dT

T
−R ln

(
p

p◦

)
. (6.18)

when p◦ is a reference pressure. For a perfect gas,

s− s0 = cp ln

(
T

T0

)
−R ln

(
p

p◦

)
. (6.19)

83

Figure 6.1: Approximate mean active degrees of freedom in selected
ideal gas models

84

when T0 is a reference temperature.
Evaluating the pressure portion of (6.19) is straightforward, but it

will be seen below that the temperature dependence is more nuanced.
For that reason, it is often treated alone,

s◦(T) = s0 +

∫
cp(T)

dT

T
, (6.20)

where s◦ is the entropy at the reference pressure, p◦.
An identical approach can be taken for enthalpy, but with an even

simpler result.

h− h0 =

∫
cp(T)dT (6.21)

For a perfect gas,

h− h0 = cp (T − T0) . (6.22)

Enthalpy is sometimes tabulated as h◦(T), but it is an inherent as-
sumption associated with ideal gases, that h(T, p) = h◦(T).

In the NIST-JANAF tables, the specific heat is calculated theo-
retically from the molecular and atomic structure of each atom, but
specific heat is also readily validated by calorimetry. For the elements
in their most stable state (e.g. diatomic hydrogen, monoatomic argon,
. . .), h0 is fixed at zero at the reference conditions. The enthalpy of
compounds at the reference conditions are fixed empirically to match
calorimetry experiments so that the enthalpy of formation (see Section
6.1.6) is correct [1, pg 13].

The integration factor for entropy requires substantially more nu-
ance. The introduction to the 1998 NIST-JANAF tables describes a
procedure for using equilibrium data from “small groups of interrelated
substances” to relate the Gibbs energy, and the entropy with it [1, pg
14 par 3]. The authors even recommend adjusting those values based
on the application in detailed reaction modeling.

Since simultaneous solution has not been attempted for all
substances it is necessary to fix, simultaneously when pos-
sible, certain key values for common substances. These

85

are then used in the usual sequential way to help fix other
substances. JANAF policy is to adopt the key values rec-
ommended by the CODATA Task Group for Key Values in
Chemical Thermodynamics. Exceptions to this policy only
occur when additional recent data are available.

Because of the many revisions of these tables, perfect in-
terconsistency is not always attained. However, any incon-
sistency of the tables is a prime concern and is cause for
revision if the effects are of the same order of magnitude as
the stated uncertainties. [1, pg 14]

6.1.6 Formation properties

When a substance is formed either by nuclear, chemical or phase change,
energy and entropy are nearly always released or consumed. These are
accounted for by the enthalpy of formation and entropy of formation.
The former is the energy required to form a substance from its atomic
constituents starting in their reference state, so exothermic reactions
have negative enthalpies of formation. The ideal gas data do not con-
sider nuclear reactions; only chemical reactions and phase changes.

One might imagine a reactor with a mixture of reactants flowing in
and a mixture of products flowing out. In the simplest case, we should
imagine the products to be made entirely of the substance we wish to
study, so the reactants will be only those that are absolutely necessary
for forming it and in the correct proportions. For example,

H2 + 0.5O2 → H2O. (6.23)

Note that the reference states for hydrogen and oxygen are not monoatomic
hydrogen or oxygen. Instead, they are their most table state at the ref-
erence conditions, 298.15 K and 1 bar.

Many such chemical reactions release or consume vast amounts of
energy. Usually, this results in cooling or heating of the substance as
it changes. When heat and work are neither added nor removed from
the system, an energy balance mandates an isenthalpic process,

hreactants = hproducts

hH2 + 0.5hO2 = hH2O (6.24)

86

Figure 6.2: Isenthalpic and isothermal reactions on an h-T diagram.

when h is enthalpy in molar units.
This result is often counter intuitive. Since ideal gas enthalpy is

only a function of temperature, it may seem like an isenthalpic process
should also be isothermal. However, it is important to recall that the
enthalpies of substances includes chemical energy, so these curves may
include a dramatic offset from one another.

Fig. 6.2 shows enthalpy curves for a hypothetical set of reactants
and products. Not only may the two have dissimilar slopes, but the
curves may have large offsets separating them. When the process is
isenthalpic, these offsets cause temperature changes shown in red. In
the case shown, the reactants have higher enthalpy than the products,
so the additional energy is absorbed thermally by the products, causing
an increase in temperature. On a molecular level, the effect is like
allowing two magnetic marbles to roll near one another on a flat table.
Even if neither has much velocity to begin with, after they collide, they
will be sent off quickly spinning and rolling. The same happens in an
exothermic reaction.

87

If the hypothetical reactor were modified to add or extract heat so
that the temperature of the reaction were constant, the process would
adopt the vertical blue line instead. In an isothermal reaction, the
amount of thermal energy exhibited by the substance is constant, so
any release or consumption of heat will have come from a chemical re-
action (including a change in the substance’s active degrees of freedom,
m). Therefore, the change in enthalpy between the two curves is the
enthalpy consumed by the chemical reaction reaction.

In the diagram, the enthalpy is seen decreasing in order to main-
tain the temperature, so heat was removed, and the reaction is called
exothermic. For our example with water, the enthalpy of formation
would be

∆fh
◦
(T) = hH2O(T)− hH2(T)− 0.5hO2(T) (6.25)

The traditional notation for enthalpy of formation, ∆fh
◦
, is cumber-

some but specific. The ∆f is traditionally used to denote “change in
during formation,” and the circle denotes that the process is at the ref-
erence pressure. Enthalpy of formation is calculated isothermally, so it
is also a function of the temperature at which the process is conducted.

It is important to note that the enthalpy of formation is only cal-
culated relative to the constituent atoms in their reference state. The
reference state is carefully defined as the atoms in their most stable
state at 298.15 K and 1 bar. For hydrogen and oxygen, this is un-
ambiguously diatomic gases, but other substances must be calculated
from solid, like compounds involving magnesium.

Once enthalpy of formation is obtained in experiment, the value
for h0 from the previous chapter can be chosen to match at the ex-
perimental conditions. Then, the specific heats of species are sufficient
information to extrapolate to other conditions.

However, s0 and the entropy of formation, ∆fs, are much more
difficult to obtain. The entropy of formation is usually inferred from
equilibrium concentrations. A reversible reaction’s equilibrium condi-
tions are

0 = ∆g = ∆h− Teq∆s. (6.26)

So, there is an empirical link between the enthalpy of formation and
the entropy of formation that can be used to calculate the one from the

88

other once the equilibrium concentrations are known. Unfortunately,
these conditions occur in systems of groups of atoms interacting in nu-
merous interactions and not necessarily all in the gas phase. A detailed
treatment is not given here, but significant effort is required to generate
values for s0 from these data.

6.1.7 Speed of sound

In Section 1.1.13, the speed of sound, a, was defined as

a2 =

(
∂p

∂ρ

)
s

. (6.27)

Isentropic compression obeys

0 = Tds = de+ pdv

= dh− vdp.

After some manipulation, these can be integrated to yield the isentropic
relations for an ideal gas

T

T0
=

(
v

v0

)−(γ−1)

=

(
ρ

ρ0

)γ−1

T

T0
=

(
p

p0

) γ−1
γ

or simply

p

p0
=

(
ρ

ρ0

)γ

. (6.28)

Here, T0, p0, and ρ0 represent the initial state of the gas, and the prop-
erties, T , p, and ρ is the state of the gas after isentropic compression
or expansion.

Speed of sound, therefore, is obtained by differentiating pressure
with respect to density,

a2 =
∂

∂ρ
p0

(
ρ

ρ0

)γ

= γ
p0
ρ0

(
ρ

ρ0

)γ−1

= γ
p0
ρ

(
ρ

ρ0

)γ

= γ
p

ρ

= γRT (6.29)

89

6.1.8 Other properties

Once cp(T) is well defined, it is also possible to evaluate internal energy,

e(T) = h(T)−RT, (6.30)

Helmholtz free energy,

f(T) = h(T)− (R+ s(T))T, (6.31)

Gibbs energy,

g(T) = h(T)− Ts(T), (6.32)

constant-volume specific heat,

cv(T) = cp(T)−R, (6.33)

specific heat ratio,

γ(T) =
cp(T)

cp(T)−R
, (6.34)

speed of sound

a(T) =
√
γ(T)RT, (6.35)

and others.

6.1.9 Properties of mixtures

The discussion so far has applied only to properties of pure ideal gases.
The composition of a gas mixture is conventionally defined in either
mass or molar quantities of the constituent pure gases. In this section,
we establish methods by which properties can be calculated from the
properties of the components.

In extensive units, a volume, V , might contain many individual gas
species, each with total mass, mi, or total mole count, Ni. They are
related by the pure gas’s molecular weight,

mi = WiNi. (6.36)

90

Mass and mole fractions are the fractions of a gas composed of
a single pure substance. The total mass and count of gas in the volume
is merely the sum of all the constituents, m =

∑
mi, and N =

∑
Ni.

These let us more conveniently express the composition in mass and
mole fractions, respectively,

yi ≡
mi∑
mk

(6.37a)

χi =≡
Ni∑
Nk

. (6.37b)

Note that the fractional quantities, yi and χi, are not dependent on
the choice of units for mass or mole count. Observe that, by definition,∑

yi =
∑

χi = 1.
Mixture density is the total mass or mole count of all species

divided by the volume they occupy.

ρ ≡
∑

mi

V
(6.38a)

ρ ≡
∑

Ni

V
(6.38b)

If ρi and ρi were the densities of constituent i at the same temperature
and pressure as the total mixture, then it is important to emphasize
that mi/V and Ni/V are not ρi and ρi. That question is addressed
below.

Molecular weight of a gas mixture has the same definition as the
molecular weight of a pure gas; it is the mass per mole count of total
gas. It can be calculated from the constituent molecular weights using

91

either mole fractions or mass fractions,

W ≡
∑

mi∑
Nj

(6.39a)

=

∑
NiWi∑
Nj

=
∑

χiWi (6.39b)

=

∑
mi∑

mj/Wj

=

(∑ yj
Wj

)−1

. (6.39c)

Partial pressure, pi, is the pressure force exerted on a surface
due only to collisions of a single constituent, i. Section 6.1.1 will help
understand what is meant by this idea. It is the pressure force that
would be measured if all other constituent gases were removed.

pi ≡
Ni

V
RuT

= χi
N

V
RuT

= χiρRuT (6.40)

The same pressure may be calculated from mass fraction,

pi =
Ni

V
RuT

=
mi

WiV
ρRuT

= yiρRiT (6.41)

The ideal gas constant, Ri, is the mass-based gas constant for only that
constituent, Ri = Ru/Wi.

Total pressure, p, is the pressure force actually experienced by a
surface due to all of the constituent gases. By definition,

p =
∑

pi

= ρRuT (6.42)

92

Observe, also, that

χi =
pi
p
. (6.43)

The total pressure can also be calculated in terms of mass density.
Using (6.39c),

p =
∑

pi

=
∑

yiρRiT

=
∑ yi

Wi
ρRuT

= ρRT. (6.44)

The total mixture gas constant appears naturally.
The mixture gas constant, R, appears naturally when calcu-

lating total pressure from total mass density, and it is calculated in
precisely the same way as a pure gas constant, but the mixture molec-
ular weight is used instead,

R ≡ Ru

W
(6.45a)

=
Ru∑
χiWi

=

(
χi

Ri

)−1

(6.45b)

= Ru

∑ yi
Wi

=
∑

yiRi (6.45c)

Densities can be calculated from the same properties of the com-

93

ponent species using the ideal gas law. For mass density,

ρ =
p

RT

=
p∑
yiRiT

=

(∑ yi
ρi(T, p)

)−1

(6.46a)

=
p

(
∑

χi/Ri)
−1 T

=
∑

χiρi(T, p) (6.46b)

For molar density, no such complexity is needed, since the universal
gas constant is the same for all gases,

ρ =
p

RuT

Internal energy, enthalpy, entropy, and other bulk proper-
ties are merely the sum of all the values contributed by each of the
constituent gases. By definition, ideal gases in a mixture do not affect
one another, so each is evaluated at the pressure it would exhibit if all
other gases were removed; the partial pressure, pi.(∑

mj

)
ϕ(T, p) =

∑
miϕi(T, pi)(∑

Nj

)
ϕ(T, p) =

∑
Niϕi(T, pi)

Therefore,

ϕ(T, p) =
∑

yiϕi(T, p)

ϕ(T, p) =
∑

χiϕi(T, pi)

In ideal gases, only entropy is affected by mixing. We leave the discus-
sion of the entropy of mixing for Section 6.2.3.

This identity may be applied to internal energy, enthalpy, entropy,

94

and all the properties derived from them, so

e(T) =
∑

yiei(T) (6.47a)

h(T) =
∑

yihi(T) (6.47b)

s(T, p) =
∑

yisi(T, pi) (6.47c)

and

e(T) =
∑

χiei(T) (6.48a)

h(T) =
∑

χihi(T) (6.48b)

s(T, p) =
∑

χisi(T, pi). (6.48c)

6.2 The ideal gas collection

There are several classes that implement various data models for ideal
gas properties. Their interfaces are all standardized so that very little
difference should be apparent to the user, except that the ideal gas
mixture class has some extra methods associated with its composition.

All property methods accept any two of temperature, density, or
pressure to specify the state.

6.2.1 The Shomate equation: ig

PYroMat’s ig class is built on the Shomate equation for constant-
pressure specific heat cp. This is the formulation used by the NIST
webbook [12]. It has the advantage of using a simple standard piece-
wise formulation for specific heat, but it does suffer from certain limi-
tations.

The Shomate equation takes the form

θ =
T

Ts
(6.49)

cp(t) = c0 + c1θ + c2θ
2 + c3θ

3 +
c4
θ2

, (6.50)

where the scaling temperature, Ts is 1000K for all species. The decision
to scale the temperature by a large value has the effect of scaling τ so

95

that it will not be much larger than 5 or 6. That helps reduce numerical
errors in high-order polynomials.

Because of its simplicity, the Shomate equations lack the degrees of
freedom to express specific heat over wide ranges, so data are usually
given in piece-wise formulations. For example, tungsten dioxide (WO2),
has a set of coefficients for 298K ≤ T < 1100K and 1100K ≤ T ≤
6000K.

The enthalpy can be explicitly calculated from (6.21),

h(T) = h0 +

∫
cp(T)dT

= h0 + Ts

∫
cp(θ)dθ

= Ts

(
c0θ +

c1
2
θ2 +

c2
3
θ3 +

c3
4
θ4 − c4

θ
+ c5

)
. (6.51)

It is important to emphasize that h0 is not the same as the enthalpy
of formation, ∆h◦f . Instead, it is merely an integration constant, which
can be alternately expressed as a new coefficient, c5.

Because of the temperature term in the denominator, no multiple
of Ts appears in entropy when the integration is changed to θ,

s◦(T) = s0 +

∫
cp(T)

T
dT

= s0 +

∫
cp(θ)

θ
dθ

= c0 ln θ + c1θ +
c2
2
θ2 +

c3
3
θ3 − c4

2θ2
+ c6 (6.52)

s(T, p) = s◦(T)−R ln

(
p

p◦

)
Just like in the enthalpy integral, a new coefficient, c6, has been intro-
duced to represent the integration constant.

Table 6.1 lists the data elements that define the ig class. For more
information on how .hpd files are stored, see Section 5.2.2. Most of
the essential data elements are self explanatory, but the coefficients
and temperature limits must have compatible sizes. Even though the
ig class only uses seven coefficients, there are eight provided in the

96

Table 6.1: HPD data file elements for the ig class
Name Type Description

id str Unique substance identifier string
class =’ig’ Class identifier string
doc str Documentation string

atoms dict Keys are elemental atoms, and values
are their integer quantities in the sub-
stance.

mw float The molecular weight.
Tlim list A sorted list of N + 1 floating point

temperatures. Middle values define
the boundaries between piece-wise co-
efficient ranges. High and low values
define the limits of the model.

C nested list The value, C[i][j], corresponds to co-
efficient cj in the temperature interval
Tlim[i] to Tlim[i+1].

TAB nested list Optional table of truth values pub-
lished by NIST used for validation

NIST data sets. If there are N sets of coefficients defined over N
temperature ranges, there must be N arrays of eight coefficients and
N +1 temperature limit values. 5 For example, in a data set with two
temperature ranges, the following would define a data set valid between
<T0> and <T2>, and the transition between the two piece-wise data sets
is at <T1>.

"Tlim":[<T0 >, <T1 >, <T2 >]

"C":[

[<c0 >, <c1 >, <c2 >, <c3>, <c4>, <c5>, <c6>, <c7>],

[<c0 >, <c1 >, <c2 >, <c3>, <c4>, <c5>, <c6>, <c7>],

]

6.2.2 The NASA polynomial: ig2

The so-called “NASA polynomials” are a piece-wise empirical formu-
lation to the specific heat of an ideal gas. They are taken from [13]

97

predate the latest formulation of the NIST-JANAF tables, and are
even used for reference. Unlike the Shomate equation, there is no 1/t2

term, there is no attempt to scale temperature prior to evaluating the
polynomial, and properties are scaled with respect to the ideal gas
constant.

cp(T) = R
(
c0 + c1T + c2T

2 + c3T
3 + c4T

4
)

(6.53)

There are nearly identical formulations for enthalpy,

h(T) = R
(
c0T +

c1
2
T 2 +

c2
3
T 3 +

c3
4
T 4 +

c4
5
T 5 + c5

)
, (6.54)

and entropy

s◦(T) = R
(
c0 ln(T) + c1T +

c2
2
T 2 +

c3
3
T 3 +

c4
4
T 4 + c6

)
. (6.55)

Here, just as in the Shomate equations, c5 and c6 are introduced as
integration constants in enthalpy and entropy.

There is some significant overlap in the species offered by the two
classes. For substances that have available models for both, PYroMat
actually installs with data for both models. However, the Shomate
equation substances are suppressed from loading so the older NASA
polynomials take precedence for two reasons:

• Most of the NASA models have wider ranges of validity than the
Shomate models.

• Some of the Shomate data have been found to suffer from discon-
tinuity errors at the piecewise boundaries.

Otherwise, the two have been found to be sufficiently equivalent that
most users will not find a reason to be aware of the distinction.

Table 6.2 lists the data elements that define the ig2 class. For
more information on how .hpd files are stored, see Section 5.2.2. Most
of the essential data elements are self explanatory, but the coefficients
and temperature limits must have compatible sizes. Even though the
ig2 class only uses seven coefficients, there are eight provided in the

98

Table 6.2: HPD data file elements for the ig2 class
Name Type Description

id str Unique substance identifier string
class =’ig2’ Class identifier string
doc str Documentation string

atoms dict Keys are elemental atoms, and values
are their integer quantities in the sub-
stance.

pref float Reference pressure in Pascals
mw float The molecular weight.
Tlim list A sorted list of N + 1 floating point

temperatures: Middle values define
the boundaries between piece-wise co-
efficient ranges. High and low values
define the limits of the model.

C nested list The value, C[i][j], corresponds to co-
efficient cj in the temperature interval
Tlim[i] to Tlim[i+1].

NIST data sets. If there are N sets of coefficients defined over N
temperature ranges, there must be N arrays of eight coefficients and
N + 1 temperature limit values.

For example, in a data set with two temperature ranges, the fol-
lowing would define a data set valid between <T0> and <T2>, and the
transition between the two piece-wise data sets is at <T1>.

"Tlim":[<T0 >, <T1 >, <T2 >]

"C":[

[<c0 >, <c1 >, <c2 >, <c3>, <c4>, <c5>, <c6>, <c7 >],

[<c0 >, <c1 >, <c2 >, <c3>, <c4>, <c5>, <c6>, <c7 >],

]

6.2.3 The ideal gas mixture: igmix

The PYroMat ideal gas mixture class defines methods to calculate prop-
erties of a static mixture of ideal gases. For improved computational

99

efficiency, properties like the mixture molecular weight, mole fractions,
and mass fractions, are calculated ahead of time and stored in class
instances for later use.

Section 6.1.9 already shows how properties of a mixture can be
calculated from the properties of the constituent gases. The imple-
mentation of all but entropy is quite straightforward. In all of the ideal
gas codes, the entropy at the reference pressure, s◦, is calculated in
a separate efficient internal method. For that reason, the igmix class
calls on these methods directly and then treats the pressure dependence
separately.

When calculating in molar units,

s(T, p) =
∑

χis(T, pi)

=
∑

χi s
◦
i (T)−

∑
χiRu ln

(
pχi

p◦i

)
,

where pi is the partial pressure of constituent i and p◦i is the reference
pressure of constituent i.

The partial pressure is merely pχi, but the reference pressure for
each substance may vary depending on the data source. We deal with
this in the following way.∑

χi ln

(
pχi

p◦i

)
=
∑

χi (ln p+ lnχi − ln p◦i)

=
(
ln p−

∑
χi ln p

◦
i

)
+
∑

χi lnχi

When

p◦mix = exp
(∑

χi ln p
◦
i

)
(6.56)

smix = −Ru

∑
χi lnχi, (6.57)

the enthalpy is calculated by

s(T, p) = smix +
∑

χi s
◦
i (T)−Ru ln

(
p

p◦mix

)
,

The new reference pressure, p◦mix, is a log-weighted average of the
constituent reference pressures. In the event that they are all the same,
the mixture reference pressure is also the same.

100

Table 6.3: HPD data file elements for the igmix class
Name Type Description

id str Unique substance identifier string
class =’igmix’ Class identifier string
doc str Documentation string

bymass bool Indicates whether contents are listed
by mass or by mole count

contents dict Specifies the mixture composition:
Keys are pure ideal gas id strings, val-
ues are quantities. The quantities will
be normalized after load, so they do
not need to add to one.

Neither a function of temperature nor pressure, the entropy of mix-
ing, smix, is a constant that represents the entropy created by dispersing
constituent gases into one another. Note that it is added to the entropy
that would be calculated from the pure constituents.

101

Chapter 7

Multi-phase substance
models

Unlike ideal gas properties, it is sensible to formulate multi-phase prop-
erties in terms of temperature and density instead of temperature and
pressure. Modeling phase changes with temperature and pressure as
independent variables requires a discontinuity at the phase change. On
the other hand, using density requires no such discontinuity, and it
even permits modeling meta-stable states.

Historically, there have been countless approaches to the problem,
beginning with the so-called “viral” terms inspired by Van der Waals
forces in early work on the kinetic theory of gases. This approach
began an evolution of increasingly complex variants of the ideal gas
law, but parallel models for the specific heat are needed to establish a
total substance model. Eventually, this approach fell out of popularity
in favor of single property models from which all other properties could
be derived.

If these general models have some basis in physics, these approaches
have often been argued to be superior because they make it possible
to derive properties that are not so easily measured. For example, the
specific heat or the speed of sound may be quite practical to measure
precisely in a laboratory, and a substance model that reliably predicts
them throughout the thermodynamic domain may also provide good
predictions for a quantity that is harder to measure, like the precise

102

location of the critical point.
It is possible that future releases of PYroMat may include other

formulations, but the wide availability of works providing coefficients
for more contemporary methods has made it practical to use a single
multi-phase class to model pure substances. There are works extending
these models to mixtures like air, but those are not yet implemented.

7.1 General formulation for mp1

The models supported by the mp1 class have explicit formulations for
the Holmholtz free energy (or simply free energy) in terms of temper-
ature and density, and all other properties are calculated from that
formulation. Free energy is defined as

f(T, ρ) ≡ e(T, ρ)− Ts(T, ρ) (7.1)

= h− p

ρ
− Ts. (7.2)

By constructing the formulation from a bank of terms inspired by the-
oretical formulae for the intermolecular forces, there is greater hope of
reducing the number of terms needed.

The formulation that we describe in this chapter is sometimes re-
ferred to as a “Span and Wagner” fit for Helmholtz free energy. Though
some version of the approach had already been applied successfully to
specific substances over a decade earlier [14, 15], the need for a form
that a code could apply generically to many substances prompted Span
and Wagner’s three-part 2003 paper defending its broad use for ther-
modynamic properties of fluids [16, 17, 18]. Papers by Span, Wagner,
Lemon, Jacobsen, and others for an expanding library of formulations
for substances that use a standard bank of terms to construct the free
energy equation.

In its independent implementation of this model, PYroMat is a
modest open-source Pythonic alternative to REFPROP [19], the NIST
code widely adopted for implementing these general forms.

103

7.1.1 Nondimensionalization

It is generally sound practice to nondimensionalize formulae in all but
the most trivial numerical problems. Ensuring that parameters vary
on the order of unity helps reduce the severity of numerical errors, and
if the nondimensionalization is performed with special attention to the
underlying physics, then it is highly likely that the complexity of the
formulae required will be reduced.

All of the substance models in the first multi-phase class use

α(τ, δ) =
f(T, ρ)

RT
(7.3a)

τ =
Tc

T
(7.3b)

δ =
ρ

ρc
. (7.3c)

The free energy is normalized by the quantity RT , which is moti-
vated by (6.14) from the study of ideal gases. Normalizing temperature
and density by the critical point values acknowledges that the critical
point is a natural scale for the important phenomena in this substance.
The choice to make τ scale like the inverse of temperature is motivated
by the Boltzmann and Maxwell distributions for molecular velocity, in
which temperature appears in a denominator.

The formulation for dimensionless free energy, α, is split into two
parts: the ideal gas part, αo, and the residual part, αr. So, the total
free energy is

α(τ, δ) = αo(τ, δ) + αr(τ, δ) (7.4)

This approach separates the problem of needing to model the energy
contained in molecular vibration and translation of a large number of
independent oscillators (αo) from the problem of modeling the effects
of intermolecular forces with increasing density (αr).

7.1.2 Ideal gas portion of free energy

The ideal gas portion of the free energy can be constructed from a
specific heat model, just as other properties were for the ideal gas

104

substances in Chapter 6. The ideal gas enthalpy is merely the integral
of specific heat, and ideal gas entropy can be similarly constructed in
terms of specific heat, temperature, and density,

h = h0 +

∫ T

T0

cpdT (7.5a)

s = s0 +

∫ T

T0

cp
T
dT −R ln

(
ρ

ρ0

)
−R ln

(
T

T0

)
. (7.5b)

When these are transposed into the dimensionless parameters, τ and
δ,

h = h0 − Tc

∫ τ

τ0

cp
τ2

dτ

s = s0 −
∫ τ

τ0

cp
τ
dτ −R ln

(
δτ0
δ0τ

)
.

When these are used to calculate the dimensionless free energy,

αo =
h−RT − Ts

RT
=

hτ

RTc
− 1− s

R

=
h0
RTc

τ − s0
R
− 1 + ln

(
δτ0
δ0τ

)
+

(
−τ
∫ τ

τ0

cp
Rτ2

dτ +

∫ τ

τ0

cp
Rτ

dτ

)
(7.6)

Note that, for ease of interpretation, we have adopted a lazy notation
with τ both inside and outside of the integrals. We will adopt a more
strict notation below.

The difficulty in formulating the specific heat of even an ideal gas is
introduced in Section 1.1.7. It is, briefly, that portions of energy that a
substance stores in translation (thermal energy) versus the many inter-
nal forms of vibration depends heavily on the temperature (and inter-
molecular distance for a real substance). A fully detailed model would
need to include molecular vibration, electronic, magnetic energies, and
quantom mechanical effects. Approaches to this problem range from a
few relatively complicated terms derived from first principles to purely
empirical approaches with many simple polynomial terms. In this dis-
cussion, we will spend a little time addressing those approaches that
are most common to the ideal gas portion of the mp1 model.

105

In the ideal gas models described so far in Chapter 6, generic empir-
ical polynomials do a reasonable job of matching the phenomena that
dominate there with the advantage that a couple of standard algo-
rithms can consistently evaluate them. The caveat is that they require
piece-wise definitions to adequately capture all of the relevant features
of the curve, but the mp1 model covers the entire temperature range
with a single expression. Even though the residual terms are respon-
sible for the intermolecular forces, low-temperature gas behaviors still
need to be considered in the ideal gas portion. As a result, many high-
performing published models tend to include a mix of polynomial and
physics-based terms derived from quantum theory.

Models that include terms derived from quantum mechanics can
compactly match the decrease in specific heat seen at low tempera-
ture. The specific heat of many independent oscillators assuming a
distribution of discrete energies adopts the form

cp(τ)

R
= . . .+ bm2 τ2 exp(mτ)

(exp(mτ)− 1)2
+ . . . ,

where b represents the magnitude of the feature, and m is a dimension-
less temperature (normalized by Tc) at which the feature occurs.

The integrals of specific heat can be collectively simplified by invert-
ing the integration-by-parts procedure with a series of substitutions, so
that

−τ
∫ τ

τ0

cp(t)

Rt2
dt+

∫ τ

τ0

cp(t)

Rt
dt = −

∫ τ

τ0

[∫ t

τ0

cp(t
′)

Rt′2
dt′
]
dt. (7.7)

This has the fortunate effect of canceling the τ2 in the quantum com-

106

ponent of specific heat, making its integral straightforward.

−
∫ τ

τ0

∫ t

τ0

bm2 exp(mt′)

(exp(mt′)− 1)2
dt′dt . . .

=

∫ τ

τ0

[
bm

exp(mt)− 1
− bm

exp(mτ0)− 1

]
dt

=

∫ τ

τ0

bm exp(−mt)

1− exp(−mt)
dt− bm

exp(mτ0)− 1
(τ − τ0)

= b ln(1− exp(−mτ))− b ln(1− exp(−mτ0)) + . . .

− bm

exp(mτ0)− 1
(τ − τ0) (7.8)

The same approach could be applied to the integration of the poly-
nomial, but it is probably more easily dealt with in separate terms. For
a sum of terms with arbitrary exponents,

−τ
∫ τ

τ0

∑
k

ckt
k−2dt+

∫ τ

τ0

∑
k

ckt
k−1dt . . .

= −τ

⎡⎣c1 ln t+∑
k ̸=1

ckt
k−1

k − 1

⎤⎦τ

τ0

+

⎡⎣c0 ln t+∑
k ̸=0

ckt
k

k

⎤⎦τ

τ0

= −τc1 ln τ + τc1 ln τ0 −

⎡⎣∑
k ̸=1

ckτ
k

k − 1

⎤⎦+ τ

⎡⎣∑
k ̸=1

ckτ
k−1
0

k − 1

⎤⎦+ . . .

+ c0 ln τ − c0 ln τ0 +

⎡⎣∑
k ̸=0

ckτ
k

k

⎤⎦−
⎡⎣∑
k ̸=0

ckτ
k
0

k

⎤⎦ . (7.9)

Note that this analysis does not require that values of k be limited to
integers.

Collectively, these integrals motivate the form that is now common-
place in contemporary free-energy-based models,

αo(τ, δ) = ln δ + (c0 − 1 + c1τ) ln τ + αo
0(τ) + αo

1(τ). (7.10a)

In many models, the τ ln τ term is omitted, implying that there was
no linear term on τ (proportional to 1/T) in the formulation of specific

107

heat. This is often seen in models that model specific heat with a
constant and a series of quantum terms with no polynomial terms. The
remaining terms are a polynomial on τ , αo

0, and the quantum terms,
αo
1. which are only functions of temperature. The αo

1 term includes a
sum of all of the quantum functions,

αo
1(τ) =

∑
j

bj ln (1− exp(−mjτ)) , (7.10b)

and the αo
0(τ) term is merely a polynomial. In many models, it is a

constant and a linear term only, representing the terms that appear in
(7.6).

Because much of the complexity of the specific heat is captured by
the αo

1 terms, the polynomial, αo
0, may only contain a constant and a

linear term. Still, exponentials and logarithms are numerically expen-
sive, so this model is usually substantially slower than the polynomial
ideal gas models.

In the data files, the ideal gas terms are contained in a dictionary
called the "AOgroup". An "AOgroup" entry in the file might appear
like the example below. For more information on data files, see Section
5.2.2. For more information on polynomial coefficient lists, see Section
8.2.

"AOgroup" : {

"Tscale" : <Tc >,

"dscale" : <dc >,

"logt" : <c0 >,

"tlogt" : <c1 >,

"coef0" : <p coefficients >,

"coef1" : [[<m0 >, <b0 >], [<m1>, <b1 >], <...>]

}

7.1.3 Residual portion of free energy

The residual (or real-fluid) portion of free energy attempts to account
for everything that the ideal gas portion does not. Many of these
terms become especially important when the substance density is high,
because intermolecular forces are specifically ignored in the ideal gas

108

model. The model is divided into three groups of terms,

αr = αr
0(τ, δ) + αr

1(τ, δ) + αr
2(τ, δ) (7.11a)

Many of these terms are physically motivated, but that discussion is
not included here.

The first group of terms is a series of polynomials multiplied by
exponentials of powers of density,

αr
0 = p0(τ, δ) +

K∑
k=1

exp
(
−δk

)
pk(τ, δ) (7.11b)

pk =
∑
i

ciτ
aiδbi . (7.11c)

While it is not explicitly forbidden, the δ exponent, b, is neither zero nor
negative in these models, so αr

0 terms with the exponential multipliers
vanish near δ → 0 and δ → ∞. These terms model the complicated
behaviors that occur near the phase change (when δ is on the order 1).

In most models, the first group (αr
0) constitutes the largest number

of terms (often dozens). The exponents in the polynomial expansion
are sometimes integers, but they are often rationals (which permits
efficient evaluation using the method described in Section 8.1), and
they are rarely long decimal values.

The second group of terms, αr
1, is a Gaussian function multiplied

by polynomial terms of τ and δ. It was first introduced in 1991 by Set-
zmann et al. to better model the severely distorted surface that occurs
near the critical point in oxygen. Most models only use a few of these
terms at most, and they are usually centered (by ϵ and γ) very close
to the critical point. From to the 1991 paper, “The opinion has been
widely held that analytic equations of state covering the whole fluid
region are not able to represent the properties in the critical region.”
The authors continue to say, “We will show that our new equation is
able to represent the existing experimental information on the thermo-
dynamic properties of methane in the critical region at least as well as
[competing models].” [15]

The third group, αr
2, is a Gaussian centered on exactly the critical

point, but the coefficient, ∆, is a scaled distance from the critical point.

109

The term appears in a 1994 paper modeling carbon dioxide [20] and
again in a 2014 revision to the properties of water and steam [21], but
in conspicuously few others. While its formulation is not explained in
detail in these sources, it allows for a more complicated shape from
the term without the computational expense of additional polynomial
terms. It seems to have been designed to reduce the number of Gaussian
terms required to produce the desired result at the critical point.

αr
1 =

L∑
l=0

clδ
dlτ tl exp

(
−al(δ − ϵl)

2 − bl(τ − γl)
2
)

(7.11d)

αr
2 =

M∑
m=0

cm∆m
bmδ exp

(
−Cm(δ − 1)2 −Dm(τ − 1)2

)
(7.11e)

∆m =
[
1− τ +Am

(
(δ − 1)2

)1/2βm
]2

+Bm

(
(δ − 1)2

)am
. (7.11f)

At first glance, these formulations may appear to be an inefficient tan-
gled mess of nested exponents. However, quantities like τ − 1 and
δ − 1 may be positive or negative, and the exponents are not integers.
It is numerically elegant to square these quantities (requiring just a
multiplication operation) before raising them to decimal or fractional
powers.

In the data files, these terms are encoded in a format shown below.
The coef0 member contains a list of 2D polynomial coefficients. Each
polynomial, pk, corresponds to an exponential term, exp(−δk). The
coef1 and coef2 members are nested lists with each containing the
necessary coefficients and exponents to construct the terms of αr

1 and
αr
2 respectively.

"ARgroup" : {

"Tscale" : <Tc >,

"dscale" : <dc >,

"coef0" : [<p0 coef >, <p1 coef >, ...]

"coef1" : [[<t>, <d>, , <a>, <gamma >, <epsilon

>, <c>], ...]

"coef2" : [[<a>, , <beta >, <A>, , <C>, <D>,

<c>], ...]

}

110

For more information on polynomial coefficients, see Section 8.1. It
is worth emphasizing that coef0 is a four-deep nested list.

"coef0" : [# This begins the list of polynomials

[# This begins the first polynomial

[# First sub -polynomial

[<a>,],

[<alpha >, <beta >],

[<i0>, <j0>, <c0 >],

<...>

], <...more sub -polynomials ?...>

],

[# This begins the exp(-delta) term

<... polynomial definition ...>

],

[# This begins the exp(-delta **2) term

<... polynomial definition ...>

],

<...>

]

7.1.4 Derivatives of free energy

As we will address in the next section, it is also important to evaluate up
to the second derivative of these terms. This is sufficiently cumbersome
to deserve some treatment here. The efficient evaluation of derivatives
of polynomials is addressed in Section 8.1, so we only need to treat the
other aspects of these functional forms.

The ideal gas portion in (7.10a) has derivatives

αo
τ = (c0 − 1)τ−1 + c1(1 + ln τ) + αo

0,τ + αo
1,τ (7.12a)

αo
δ = δ−1 (7.12b)

αo
ττ = −(c0 − 1)τ−2 + c1τ

−1 + αo
0,ττ + αo

1,ττ (7.12c)

αo
τδ = 0 (7.12d)

αo
δδ = −δ−2 (7.12e)

The polynomial, αo
0(τ), and its derivatives can be evaluated separately.

111

All that remains is to determine the derivatives of αo
1(τ).

αo
1,τ =

∑
j

bjmj

exp(mjτ)− 1
(7.13a)

αo
1,ττ =

∑
j

bjm
2
j exp(mjτ)

(exp(mjτ)− 1)2
(7.13b)

Derivatives of the residual portion in (7.11a) can be calculated in-
dividually. Much of αr

0 in (7.11c) can be calculated trivially from the
derivatives of the polynomials.

αr
0,τ = p0,τ +

K∑
k=1

exp
(
−δk

)
pk,τ (7.14a)

αr
0,δ = p0,δ +

K∑
k=1

exp
(
−δk

)(
pk,δ − kδk−1pk

)
(7.14b)

αr
0,ττ = p0,ττ +

K∑
k=1

exp
(
−δk

)
pk,ττ (7.14c)

αr
0,τδ = p0,τδ +

K∑
k=1

exp
(
−δk

)(
pk,τδ − kδk−1pk,τ

)
(7.14d)

αr
0,δδ = p0,δδ +

K∑
k=1

exp
(
−δk

)(
pk,δδ − k(k − 1)δk−2pk . . .

−2kδk−1pk,δ + k2δ2(k−1)pk

)
(7.14e)

Derivatives of the first Gaussian terms in (7.11d) are conveniently
calculated as proportional to the terms themselves. If each term were
expressed as the polynomial term multiplier, pl, and the Gaussian term,
gl, then αr

1 =
∑

l plgl. Derivatives on αr
1 can be conveniently con-

112

structed in terms of those intermediates.

pl = cl τ
tlδdl (7.15a)

pl,τ = tl
pl
τ

(7.15b)

pl,δ = dl
pl
δ

(7.15c)

pl,ττ = tl(tl − 1)
pl
τ2

(7.15d)

pl,τδ = tldl
pl
τδ

(7.15e)

pl,δδ = dl(dl − 1)
pl
δ2

(7.15f)

gl = exp
(
−al(δ − ϵl)

2 − bl(τ − γl)
2
)

(7.16a)

gl,τ = −2bl(τ − γl) gl (7.16b)

gl,δ = −2al(δ − ϵl) gl (7.16c)

gl,ττ = −2bl gl − 2bl(τ − γl) gl,τ (7.16d)

gl,τδ = −2bl(τ − γl) gl,δ = −2al(δ − ϵl) gl,τ (7.16e)

gl,δδ = −2al gl − 2al(δ − ϵl) gl,δ (7.16f)

αr
1,τ =

L∑
l=0

pl,τ gl + pl gl,τ (7.17a)

αr
1,δ =

L∑
l=0

pl,δ gl + pl gl,δ (7.17b)

αr
1,ττ =

L∑
l=0

pl,ττ gl + 2pl,τ gl,τ + pl gl,ττ (7.17c)

αr
1,τδ =

L∑
l=0

pl,τδ gl + pl,τ gl,δ + pl,δ gl,τ + pl gτδ (7.17d)

This approach to evaluating derivatives in stages helps numerical
efficiency, since there are obvious ways to make repeated use of inter-
mediate values, but it also helps with the clarity of the code. The same

113

approach is even more valuable in the treatment of the second Gaus-
sian terms in (7.11e). First, we turn our attention to derivatives of the
distance term, ∆. For ease of notation, we will omit the subscript, m,
on all of the empirical coefficients.

∆τ = −2
[
1− τ +A

(
(δ − 1)2

)1/2β]
(7.18a)

∆δ = 2
A

β

[
1− τ +A

(
(δ − 1)2

)1/2β] (
(δ − 1)2

)1/2β−1/2
(7.18b)

∆ττ = 2 (7.18c)

∆τδ = 2
A

β

(
(δ − 1)2

)1/2β−1/2
(7.18d)

∆δδ = 2

(
A

β

)2 (
(δ − 1)2

)1/β−1
. . .

+ 2
A

β

(
1

β
− 1

)[
1− τ +A

(
(δ − 1)2

)1/2β] (
(δ − 1)2

)1/2β−1

(7.18e)

Next, we will consider the exponential term separately,

f(τ, δ) = exp(−C(δ − 1)2 −D(τ − 1)2) (7.19a)

fτ = −2D(τ − 1)f (7.19b)

fδ = −2C(δ − 1)f (7.19c)

fττ = −2Df − 2D(τ − 1)fτ (7.19d)

fτδ = −2D(τ − 1)fδ = −2C(δ − 1)fτ (7.19e)

fδδ = −2Cf − 2C(δ − 1)fδ (7.19f)

Finally, the αr
2 derivatives may be constructed as

αr
2 = ∆δf (7.20a)

αr
2,τ = ∆τδf +∆δfτ (7.20b)

αr
2,δ = ∆δδf +∆f +∆δfδ (7.20c)

αr
2,ττ = ∆ττδf + 2∆τδfτ +∆δfττ (7.20d)

αr
2,τδ = ∆τδδf +∆τf +∆τδfδ + . . .

+∆δδfτ +∆fτ +∆δfτδ (7.20e)

αr
2,δδ = ∆δδδf + 2∆δf + 2∆δδfδ + 2∆fδ +∆δfδδ (7.20f)

114

7.2 Calculation of properties

The mp1 class calculates all substance properties from temperature,
density, α, and its derivatives. In this section, the formulae that are
used to calculate the various properties are developed from first prin-
ciples.

In this development, it will be useful to have this form of the first
law:

Tds = de− p

ρ2
dρ. (7.21)

By definition,

f = e− Ts. (7.22)

Its derivatives with respect to temperature and density may be simpli-
fied with some help from (7.21),(

∂f

∂T

)
ρ

=

(
∂e

∂T

)
ρ

− s− T

(
∂s

∂T

)
ρ

= − s (7.23)(
∂f

∂ρ

)
T

=

(
∂e

∂ρ

)
T

− T

(
∂s

∂ρ

)
T

=
p

ρ2
. (7.24)

The properties below are calculated in a dimensionless form. In this
way, this document is relieved from needing to be sensitive to units –
including molar versus mass.

7.2.1 Pressure

The pressure (and compressibility factor) can be calculated explicitly
from (7.24),

p

ρRT
=

ρ

RT

(
∂f

∂ρ

)
T

= δαδ. (7.25)

115

7.2.2 Entropy

Entropy appears explicitly in (7.23), so it only needs to be transformed
into terms of α. First, it is helpful to observe that derivatives with
respect to temperature may be transposed into derivatives with respect
to τ

∂

∂T
= − τ

T

∂

∂τ
.

Therefore,

s = −
(
∂f

∂T

)
ρ

= − ∂

∂T
RTα

= −Rα+Rτατ (7.26)

So, normalized by R, entropy is

s

R
= τατ − α (7.27)

7.2.3 Internal energy

Internal energy can be calculated in terms of a and s from (7.22) and
(7.27),

e

RT
=

f

RT
+

s

R
= τατ . (7.28)

7.2.4 Enthalpy

Enthalpy is trivial to construct from (7.25) and (7.28). By definition,

h

RT
=

e

RT
+

p

ρRT

= τατ + δαδ. (7.29)

116

7.2.5 Gibbs free energy

Gibbs’ energy is readily calculated from enthalpy and entropy; or from
Helmholtz free energy.

g

RT
=

h

RT
− s

R
=

a

RT
+

p

ρRT

= α+ δαδ. (7.30)

7.2.6 Specific heats

Constant-volume specific heat is obtained by differentiating internal
energy by temperature.

cv =
∂e

∂T
= eτ

dτ

dT

= −eτ
τ

T

From (7.28), e is simply RTc ατ , so

cv
R

= −τ2αττ . (7.31)

Constant-pressure specific heat is not so simply obtained since pres-
sure is not one of the independent variables of the formulation. Deriva-
tions for cp usually begin with enthalpy, but it will become aparent
that the calculation benefits from the prior derivation for cv. There-
fore, from (1.16) we may write

cp =

(
∂e

∂T

)
p

− p

ρ2

(
∂ρ

∂T

)
p

.

However, because the mp1 formulation is always in terms of tem-
perature and density, derivatives with constant pressure must be trans-
posed to derivatives on T and ρ,(

∂e

∂T

)
p

=

(
∂e

∂T

)
ρ

+

(
∂e

∂ρ

)
T

(
∂ρ

∂T

)
p

.

117

Of course, the same must be done for the derivative of density,

(
∂ρ

∂T

)
p

= −

(
∂p
∂T

)
ρ(

∂p
∂ρ

)
T

.

Substituting,

cp =

(
∂e

∂T

)
ρ

−
((

∂e

∂ρ

)
T

− p

ρ2

) (∂p
∂T

)
ρ(

∂p
∂ρ

)
T

.

The first term (the derivative of interneral energy with respect to tem-
perature) is merely cv. The second term may be simplified using (7.21),
so

cp = cv − T

(
∂s

∂ρ

)
T

(
∂p
∂T

)
ρ(

∂p
∂ρ

)
T

.

Finally, this is in a form that can be conveniently substituted for
free energy. Using (7.23) and (7.24),(

∂s

∂ρ

)
T

= − ∂2f

∂T∂ρ
= −R

ρ
(δαδ − τδατδ)(

∂p

∂T

)
ρ

= ρ2
∂2f

∂T∂ρ
= Rρ (δαδ − τδατδ)(

∂p

∂ρ

)
T

= 2ρ

(
∂f

∂ρ

)
T

+ ρ2
(
∂2a

∂ρ2

)
T

. . .

= RT
(
2δαδ + δ2αδδ

)
So,

cp
R

=
cv
R

+
(δαδ − τδατδ)

2

2δαδ + δ2αδδ
(7.32)

118

7.2.7 Speed of sound

From its definition in Section 1.1.13, we write a dimensionless speed of
sound

a2

RT
=

1

RT

(
∂p

∂ρ

)
s

=
1

RT

(
∂p

∂ρ

)
T

+
1

RT

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
s

. (7.33)

The first term is obtained by differentiating (7.25) with respect to
density, producing

1

RT

(
∂p

∂ρ

)
T

= 2δαδ + δ2αδδ (7.34)

The second term in (7.33), we further sub-divide into two parts.
The first part is also obtained by differentiating (7.25), giving(

∂p

∂T

)
ρ

= ρR(δαδ − τδατδ). (7.35)

The second part involves the heating of the substance due to its isen-
tropic compression. For this, we turn to

0 = Tds = de− p

ρ2
dρ.

When we substitute (7.28) for e and (7.25) for p/ρ, we obtain

0 = −Rτ2αττdT +
RTc

ρc
ατδdρ−

RT

ρ
δαδdρ

Solving for dT/dρ, we obtain(
∂T

∂ρ

)
s

= −T

ρ

δαδ − τδατδ

τ2αττ
(7.36)

Finally, the dimensionless speed of sound is

a2

RT
= 2δαδ + δ2αδδ −

(δαδ − τδατδ)
2

τ2αττ
. (7.37)

119

7.2.8 Liquid-vapor line

A detailed formulation for pressure and Gibbs energy over a domain
gives enough information to calculate saturated states between liquid
and vapor using the Maxwell criteria. At a given temperature, T , the
Gibbs energy and pressure are equal for the liquid and vapor densities.
So,

g(T, ρL) = g(T, ρV) (7.38a)

p(T, ρL) = p(T, ρV). (7.38b)

For Newton-like numerical iteration algorithms, it is essential to provide
reasonable initial guesses for ρL and ρV . Careless guesses can simply
result in ρL = ρV , which is a classic example of a computer solution
being not wrong but not helpful. The worst case, especially problematic
near the critical point, is convergence failure.

Many original sources for equation-of-state models include polyno-
mial fits for saturation properties that are so accurate, they can even be
implemented without applying the Maxwell criteria. When these are
used as initial guesses, the Maxwell criteria are simply used to “polish”
the solution to agree more precisely with the equation of state. As
of version 2.4.5, an inner routine, ds(), is provided that implements
the Maxwell criterion, but saturation property methods do not yet im-
plement it. At the time of this writing, it is planned to transition in
version 2.4.6.

In many sources, formulae are provided for

• liquid saturation density given temperature,

• vapor saturation density given temperature,

• saturation pressure given temperature.

From them, all other properties can be obtained along the saturation
line. The mp1 class exposes these properties through methods: ds, ps,
Ts (not to be confused with T_s), es, hs, and ss. All of these depend
on the three basic empirical formulae.

These formulae are calculated from dimensionless temperature,

θ =
T

Tc
, (7.39)

120

which is the inverse of τ . Each of the formulae for a saturation property,
p, take one of four types:

0. A polynomial on θ

p(θ) =
∑
k

ckθ
ak (7.40)

This form is commonly used for liquid-solid saturation lines (not yet
implemented in version 2.1.0).

1. A polynomial on 1− θ

p(θ) =
∑
k

ck(1− θ)ak (7.41)

This form is usually used for the saturation pressure.
2. An exponential of a polynomial on 1− θ

p(θ) = exp

(∑
k

ck(1− θ)ak

)
(7.42)

This form is usually used for the liquid saturation density.
3. An exponential of a polynomial on 1 − θ with a 1/θ

multiplier

p(θ) = exp

(
1

θ

∑
k

ck(1− θ)ak

)
(7.43)

This form is usually used for the vapor saturation density.
In data, there are three groups that are used to define the saturation

pressure and densities.

"PSgroup" : {

"fn" : <fn index >,

"pscale" : <p scale >,

"Tscale" : <T scale >,

"coef" : <polynomial coefficients >

}

"DSLgroup" : {

"fn" : <fn index >,

121

"dscale" : <d scale >,

"Tscale" : <T scale >,

"coef" : <polynomial coefficients >

}

"DSVgroup" : {

"fn" : <fn index >,

"dscale" : <d scale >,

"Tscale" : <T scale >,

"coef" : <polynomial coefficients >

}

The fn parameter is an index (0-3) that selects the form of the
formula to use. The pscale and dscale parameters are used to re-
scale the dimensionless property calculated by the selected formula.
The Tscale parameter is used to normalize temperature to calculate
θ. Finally, coef is a polynomial coefficient list described in Section 8.2.

7.3 Sources implemented

Table 7.1 lists the multi-phase models currently implemented in PY-
roMat as of version 2.2.0. Entries marked with an asterisk were not
yet complete for the 2.2.0 release, but are planned to be implemented
later.

122

Table 7.1: Sources for multi-phase data used in PYroMat. Substances
with a * were not yet implemented in version 2.2.0, but they are planned
for a later release.

Argon* Ar [22]
Carbon dioxide CO2 [20]
Deuterium* D2 [23]
Hydrogen* H2 [24]
Nitrogen N2 [25]
Oxygen O2 [14]
Water H2O [21]
R-125* C2HF5 [26]
R-134a C2H2F4 [27]
R-143a* C2H2F3 [28]
R-245fa* C3H3F5 [29]
R-1234yf* C3H2F4 [30]
R-1234ze C3H2F4 [31]

123

Chapter 8

Numerical routines

PYroMat is designed with a number of custom back-end numerical rou-
tines. Even though low-level custom numerical routines composed in
plain Python are unlikely to ever compete well with compiled numer-
ical binaries that have been developed over decades, there are distinct
advantages to this approach.

• Reducing the number of dependencies makes the installation sim-
pler and less likely to exhibit mysterious problems on other sys-
tems,

• The installation footprint is minimal - not requiring entire ter-
tiary libraries,

• Algorithms can be customized to conform to the inputs and out-
puts required by the PYroMat.

• Numerical algorithms can be (and have been) tuned specifically
to provide consistent convergence for the types of numerical prob-
lems encountered in thermodynamic property evaluation.

• The PYroMat numerical routines are specially designed to iterate
on parts of a Numpy array at a time while still benefiting from
Numpy’s compiled algorithm speed.

A package written in plain Python is unlikely to ever be used in
numerically intense applications like computational fluid dynamics, so

124

we have consistently prioritized reliability over speed. Still, that’s no
reason to be wasteful with clock cycles! Even on arrays with thousands
of elements, the most cumbersome of PYroMat property calculations
reliably converge in fractions of a second in testing. The author has yet
to hear of a use case for which this performance is unacceptably slow.
Until that changes, this is how the PYroMat back-end will continue to
do things.

8.1 Polynomials of two variables

The evaluation of the multi-phase models requires efficient evaluations
of polynomials of two variables. These expansions are typically of the
form

P (X,Y) =
∑
i,j

ci,jX
iY j (8.1)

where a and b are real coefficients such that i and j are integer indices.

8.1.1 Modifying polynomials for non-integer and nega-
tive powers

Fractional and negative exponents are also possible within this frame-
work if we were to accept input values x, and y, and adjust them
according to pre-exponentials a and b,

X = xa (8.2)

Y = yb. (8.3)

Then, if the polynomial were also multiplied by post-exponential terms,
xα, and yβ, the new polynomial formed is

p(x, y) = xαyβP (X,Y). (8.4)

This results in a polynomial,

p(x, y) =
∑
i,j

ci,jx
ai+αybj+β, (8.5)

125

but in a form that can be efficiently evaluated using integer exponents,
i and j.

Non-integer exponents are problematic to polynomials, because they
require the use of a power function, while integer exponents can be eval-
uated exclusively with multiplication. For example, consider a polyno-
mial,

p(x, y) = 2x−2 + x0.1y + xy2.

X = x0.1

p(x, y) = x−2
(
2 +X21y +X40y2

)
Using scaling values a = 0.1 and α = −2, the polynomial can be
adjusted to be evaluated with only integer exponents.

However, this also illustrates a potential problem in the approach.
For individual elements a call to Numpy’s power funciton costs about
double a single multiplication, but for larger arrays (when the difference
is most important) the difference diverges. Figure 8.1 shows a timing
study of power, *, and ** operations on arrays of random positive
floating point numbers. For small arrays, the interpreter’s overhead
dominates the measurement, but above 100 elements, the two adopt
classical power curves.

Because of the dominance of numerical overhead, repeated multi-
plication operations can be more expensive than a call to power on
small arrays. However, it should be emphasized that judicious use of
computational effort is really only critical on large arrays, anyway. For
arrays with 100 elements, power operations are about 10 times as ex-
pensive, but power function calls on 10,000-element arrays are roughly
equivalent to 100 multiplications.

This leads to a careful choice for arrays with large exponents (or
tiny fractional values). The large exponents in the last example can be
mitigated at the cost of added overhead and complexity by splitting the
polynomial into two separate polynomials, each with its own scaling.

p(x, y) = 2x−2 + x0.1y + xy2.

= x−2
(
2 + x3y2

)
+ x0.1y

(8.6)

126

Figure 8.1: Approximate calculation time of the numpy power function,
** operation, and the * operation on arrays of random positive floating
point values.

127

8.1.2 Representation of polynomials in data

The json data representation of a polynomial on two dimensions uses
three-deep series of nested lists to describe the pre- and post-exponents,
the coefficients, and their corresponding exponents for multiple poly-
nomial parts. For example, the nested lists below define a polynomial
with multiple parts.

poly = [# This begins the list of sub -polynomials

[# This begins the first sub -polynomial

[<a>,],

[<alpha >, <beta >],

[<i0>, <j0>, <c0 >],

[<i1>, <j1>, <c1 >],

<...>

],

[# This begins the second sub -polynomial

[<a>,],

[<alpha >, <beta >],

[<i0>, <j0>, <c0 >],

[<i1>, <j1>, <c1 >],

<...>

],

<...more sub -polynomials ...>

]

The exponents i0, j0, i1, etc., must be non-negative integers listed
in descending order, sorted by i first and then sorted by j. An alterna-
tive approach is to define a two-dimensional polynomial with a matrix
of coefficients, each row and column corresponding to a power of x or
y, but that method suffers when there are only a few terms with high
powers. This approach might be called a “sparse coordinate matrix”
approach to defining a polynomial.

8.1.3 Efficient evaluation of the polynomial

Once a polynomial is adjusted to use only non-negative integer expo-
nents.

p(x, y) =
∑
i,j

ci,jx
iyj (8.7)

128

However, evaluating each term individually requires two expensive calls
to a pow function and two floating point multiplications.

The widely accepted method for evaluating a polynomial of one
variable is to construct a recursive expansion

q(y) = c0 + y(c1 + y(c2 + y(. . . (8.8)

If there are n coefficients, then this amounts to only n multiplications
with no pow calls. In order to extend this algorithm to two variables,
more elegant notation will be helpful. If we name the intermediate value
calculated in the process of these recursions qj , then a polynomial with
n terms implies the series

qn = cn (8.9)

qj(y) = cj + y qj+1(y) (8.10)

q0(y) = q(y). (8.11)

This is a series beginning with j = n and proceeding backwards to
j = 0. The final function in the series, q0 is also the desired polynomial,
q(y). In practice, there is no need to keep the old values of q, so a single
register may be used to hold the latest value.

How can this be extended to a polynomial of two variables? We may
consider the polynomials to be nested; the evaluation of a polynomial
on y determines the individual coefficients for a polynomial on x.

p(x, y) =
∑
i

qi(y)x
i (8.12)

qi(y) =
∑
j

ci,jy
j (8.13)

We only need a minor modification to the intermediate values for
the x polynomial since there will be a separate expansion for each value
of i. If there are n j terms,

qi,n(y) = cn,j (8.14a)

qi,j(y) = ci,j + y qi+1,j(y) (8.14b)

qi,0(y) = qi(y). (8.14c)

129

If there are m x-terms,

pm(x, y) = qm(y) (8.15a)

pi(x, y) = qi(x) + y pi+1(x, y) (8.15b)

p0(x, y) = p(x, y). (8.15c)

8.1.4 Efficient evaluation of derivatives

The partial derivatives of the polynomial can be efficiently evaluated
along with the polynomial itself. To relax the already cumbersome
notation, the functional dependencies (y) and (x, y) will be dropped.
For the purpose of thermodynamic property evaluation, the first two
derivatives will suffice.

Let us begin with the simpler task of calculating the derivatives of
qi with respect to y.

qi,n|y = 0 (8.16a)

qi,j|y = qi+1,j + y qi+1,j|y (8.16b)

qi,0|y = qi|y (8.16c)

qi,n|yy = 0 (8.17a)

qi,j|yy = 2qi,j+1|y + y qi,j+1|yy (8.17b)

qi,0|yy = qi|yy (8.17c)

The derivatives on p are constructed somewhat differently because
they can be in both x and y. Beginning with y,

pn|y = 0 (8.18a)

pj|y = qi|y + x pj+1|y (8.18b)

p0|y = py (8.18c)

pm|yy = 0 (8.19a)

pi|yy = qi|yy + x qi+1|yy (8.19b)

p0|yy = pyy (8.19c)

130

The derivatives on x appear

pm|x = 0 (8.20a)

pi|x = pi+1 + x pi+1|x (8.20b)

p0|x = px (8.20c)

pn|xx = 0 (8.21a)

pi|xx = 2pi+1|x + x pi+1|xx (8.21b)

p0|xx = pxx (8.21c)

Finally, the cross-term (both x and y) appears

pn|xy = 0 (8.22a)

pi|xy = pi+1|y + y pi+1|xy (8.22b)

p0|xy = pxy (8.22c)

8.1.5 Implementation of the algorithm

In practice, this cumbersome notation can be drastically simplified in
code because it is not necessary to distinguish between the subscripts
of p and q, provided care is taken not to overwrite a value before it is
needed.

In most practical polynomials of two variables of order m on x and
order n on y, there are (m+1)(n+1) possible coefficients, but many (if
not most) of them may be zero. As a result, storing the coefficient array
in a 2D array (or matrix) format is not efficient. Instead, PYroMat
takes an approach closer to coordinate sparse matrix storage.

If we have one-dimensional arrays of polynomial coefficients, ck, and
exponents, ik and jk, the polynomial will be constructed as

p(X,Y) =

N−1∑
k

ckX
ikY ik . (8.23)

In this way, the polynomial

p(X,Y) = −0.1X2 +XY + 0.5Y 2 − Y − 0.2 (8.24)

131

may be represented by

i = [2, 1, 0, 0, 0] (8.25)

j = [0, 1, 2, 1, 0] (8.26)

c = [−0.1, 1, 0.5, −1, 0.2] (8.27)

For the algorithm to function efficiently, it is reasonable to impose
some prior sorting of the exponent values. Since the series developed in
the previous section requires that we interact with higher-order terms
first, let us assert that the polynomial should be expressed in order of
descending exponents on X and then Y .

In Algorithm 1, an outer loop over the range of values of i and
an inner loop on the range of values of j considers all of the possible
terms in the polynomial. If coefficients are absent from the arrays
(if the i, j pair is not found), then the term is not included in the
polynomial (the coefficient is zero). Starting with the maximum value
for each exponent, the indices are reduced incrementally until the i, j
combination corresponding to the next row (k) is found.

8.2 Polynomials in one dimension

Polynomials of one dimension benefit from the same approach as two-
dimensional polynomials, but the algorithm is far simpler. All the
formulae and algorithms that apply to q in the last section may simply
be repurposed for a single dimensional polynomial.

The only topic that really requires special treatment is the for-
mat used in data. One-dimensional polynomials are identical to two-
dimensional polynomials, except (1) the pre- and post-exponent values
are scalars instead of two-element lists, and (2) each term only needs
two parameters instead of three.

coef = [# begins the polynomial

[# begins a sub -polynomial

<a>,

<alpha >,

[<i0>, <c0>],

[<i1>, <c1>],

<...>

132

Algorithm 1 Efficient evaluation of a polynomial of two variables

1: procedure poly2(x, y, i, j, c) ▷ i, j, c are arrays
2: p, px, py, pxx, pxy, pyy ← 0 ▷ Initialize the results with zero
3: imax ← i[0] ▷ Detect the maximum i value
4: k ← 0 ▷ k is our place in the coefficient array
5: for ii = imax to 0 do ▷ All possible i values
6: if k < N and i[k] == ii then ▷ Is there an xii term?
7: jmax ← j[k] ▷ Detect the maximum j value
8: q, qy, qyy ← 0 ▷ Initialize the inner q result
9: for jj = jmax to 0 do ▷ All possible j values

10: qyy ← 2qy + yqyy
11: qy ← q + yqy
12: if k < N and ak is i and bk is j then ▷ Is there a

xiiyjj term?
13: q ← ck + yq
14: k ← k + 1
15: else ▷ Term not in polynomial
16: q ← yq
17: end if
18: end for
19: pyy ← qyy + xpyy
20: pxx ← 2px + xpxx
21: pxy ← py + xpxy
22: px ← p+ xpx
23: py ← qy + xpy
24: p← q + xp
25: else ▷ Term not in polynomial
26: pyy ← xpyy
27: pxx ← 2px + xpxx
28: pxy ← py + xpxy
29: px ← p+ xpx
30: py ← xpy
31: p← xp
32: end if
33: end for
34: return p, px, py, pxx, pxy, pyy
35: end procedure

133

],

[# begins a second sub -polynomial

<a>,

<alpha >,

[<i0>, <c0>],

[<i1>, <c1>],

<...>

],

<... more sub -polynomials ?...>

]

8.3 Iteration with iter1

Most of the classes have a member that implements some variation of
the Newton-Rhapson variant _iter1 method. It is fast, and it has
excellent convergence characteristics in most applications except the
numerically irksome cases found in the multi-phase models.

Given a function on one variable, f , the _iter1 algorithm seeks a
value, x, between upper and lower limits, xmax and xmin so that f(x)
is equal to a reference value, y.

Given a guess, xk, traditional Newton-Rhapson iteration calculates
a next guess, xk+1 by extrapolating linearly,

∆x =
y − f(xk)

f ′(xk)
(8.28)

xk+1 = xk +∆x. (8.29)

This is simply repeated until y − f(xk) is sufficiently small.
However, in problems with substantial nonlinearities, the iteration

can diverge badly like in Figure 8.2. Worse still, these intermediate
guesses can even wander to illegal property values.

The _iter1 algorithm addresses the problem by allowing the calling
property method to establish upper and lower boundaries on the value,
x. If a guess wanders outside of the valid range, the size of the step,
∆x, is halved repeatedly until the next guess is back in the valid range.
The algorithm is usually initialized externally with some first guess for
x.

134

Figure 8.2: An example of a system where classical Newton iteration
diverges to illegal values. The

135

Algorithm 2 ITER1: Modified bounded Newton-Rhapson iteration,
y = f(x)

procedure iter1(f, y, xmin, xmax, x, ϵ)
xk ← x ▷ Initialize the current guess
yk ← f(x) ▷ Evaluate the function
y′k ← f ′(x)
while |y − yk| > ϵ do ▷ While error is large

∆x← (y − yk)/y
′
k ▷ Calculate step size

xk+1 ← xk +∆x ▷ Calculate the next guess
▷ If xk is out of bounds

while xk+1 > xmax or xk+1 < xmin do
∆x← ∆x/2 ▷ Halve ∆x
xk+1 ← xk +∆x ▷ Update the guess

end while
xk ← xk+1 ▷ Accept the new guess
yk ← f(xk) ▷ Evaluate the function
y′k ← f ′(xk)

end while
return xk

end procedure

136

Algorithm 2 gives a simplified version of the algorithm implemented
in PYroMat. See the in-line documentation and comments for a more
detailed description.

8.4 Iteration with hybrid1

Multi-phase properties present severe numerical challenges since the
phase change represents an abrupt jump in properties, and the itera-
tion is inherently two-dimensional. The _iter1 algorithm prevents the
solution from diverging, but it often fails to converge in multi-phase
substance inversion problems.

8.4.1 Bisection iteration

Bisection is a classic approach to nasty inversion problems where New-
ton iteration fails. If upper and lower bounds, xa and xb are found
so that f(xa) < y < f(xb), then a continuous function must have a
value somewhere between xa and xb such that f(x) = y. If we were to
divide the domain in half xc = (xa + xb)/2 and evaluate the function
there, its value will either be above or below y, so one of the two values
could be replaced by xc. In this way, the domain between xa and xb is
reliably cut in half with every iteration step, no matter how bizarrely
f(x) behaves.

This process just has to be repeated until the distance between the
upper and lower bounds have shrunk to be so small that the numeri-
cal uncertainty is acceptable. Figure 8.3 shows three steps using this
process. The vertical space occupied by each blue box represents the
shrinking uncertainty for the value of f(x) and the horizontal space
represents the shrinking uncertainty in x.

While Newton iteration might converge in only a few steps on a
nearly linear function, bisection can take tens of steps depending on
the ratio of the initial domain and the acceptable error range. Since
the domain is divided by two every time, it is easy to calculate the
number of iterations to obtain a certain domain size.

N = log2
|xb − xa|

ϵ
(8.30)

137

Figure 8.3: A depiction of the bisection iteration algorithm on a hypo-
thetical function.

138

If the initial domain were a temperature range of 0 to 1000 Kelvin,
and the acceptable error were .01 Kelvin, 17 iterations are required.
If the acceptable error were tightened to .001 Kelvin, 20 iterations are
required!

8.4.2 The hybrid1 candidates

Literature on numerical methods is littered with different flavors of hy-
brid algorithms that try to benefit from the guaranteed convergence of
bisection and the speed of Newton-Rhapson. This algorithm is specifi-
cally designed for application on the types of functions that appear in
thermodynamic properties.

This hybrid approach begins by bracketing a solution with guesses,
xa and xb, just like a bisection algorithm. Then, we calculate three
candidates for the next guess, xc:

1. Newton iteration from xa:

x1 = xa +
y − f(xa)

f ′(xa)
(8.31)

2. Newton iteration from xb:

x2 = xb +
y − f(xb)

f ′(xb)
(8.32)

3. Bisection iteration from xa and xb:

x3 =
xa + xb

2
(8.33)

These three parallel processes for calculating candidates are shown
in Figure 8.4. As the next sections will explore, the next step is to
select one. Once the function is evaluated there, the boundaries can be
updated (just like in bisection) and convergence can be tested.

One could pose dozens of ideas for how information about these
three candidates might be used to select a best guess, but only two are
implemented in PYroMat. They are discussed in the sections below.

It may appear that each iteration requires two function evaluations,
but that is not so. The next guess will be used to replace either the
upper or lower bound (and its candidate). The function values and the
candidate for the other bound can be retained.

139

Figure 8.4: A depiction of the bisection iteration algorithm on a hypo-
thetical function.

140

8.4.3 Standard candidate selection

Once the candidate guesses are calculated, the next step is to select a
single candidate for the next step of iteration. In general, the Newton
steps at the extremes of the domain are unlikely to be very good until
the algorithm is very close to the solution. If the two Newton iteration
steps produce a guess very close to each other, there is a good chance
that they can be trusted. Otherwise, it is probably best to rely on the
bisection step. Above all, it is vital that no guess ever lie outside of
the boundaries where a solution is known to exist.

In standard candidate selection, the median (middle) of the three
guesses is selected. If the median lies outside of xa and xb, then the
next guess reverts to the bisection. In this way, if the two guesses at
the edge agree, the more conservative of the two (the one closer to the
center of the domain) will be selected. If they disagree or if they both
diverge from the domain, the algorithm reverts to bisection.

The standard candidate selection process gives excellent perfor-
mance virtually everywhere in multi-phase property domains except
very near the critical point. Testing revealed that standard candidate
selection is vulnerable to slow convergence near the critical point due
to the extreme numerical stiffness there. It should be emphasized that
the algorithm still converges; just very slowly.

The problem is similar to one that happens in the secant iteration
algorithm. If a solution lies in a numerically stiff regime like in Figure
8.3, the boundary at the stiff edge will produce a guess very close to
itself while the other guess will produce a guess that diverges outside the
boundary. Median candidate selection will always favor the candidate
at the stiff edge even though it only barely moves from the one prior.

8.4.4 Paranoid candidate selection

So-called “paranoid” candidate selection utterly distrusts the Newton
method if either of the guesses lie outside of the domain. The idea is
that if the domain is so nonlinear that either of the guesses leaves the
domain, the algorithm should revert to bisection until it looks like the
function is locally linear.

In practice, paranoid hybrid iteration is slower than standard hy-

141

Algorithm 3 HYBRID1: Hybrid bisection and Newton iteration

procedure hybrid1(f, y, xa, xb, ϵx, ϵy)
ya ← f(xa) ▷ Evaluate f at the initial bounds
y′a ← f ′(xa)
yb ← f(xb)
y′b ← f ′(xb)
if ya > yb then

xa, ya, y
′
a ↔ xb, yb, y

′
b ▷ Swap the bounds

end if
if NOT ya < y < yb then

return “ERROR: The solution is not bracketed”
end if
x1 ← xa + (y − ya)/y

′
a ▷ The first candidates

x2 ← xb + (y − yb)/y
′
b

x3 ← (xa + xb)/2
while |xb − xa| > ϵx do ▷ Halt if the interval is small

xc ← median(x1, x2, x3) ▷ Select the median
if xc ≤ min(xa, xb) OR xc ≥ max(xa, xb) then ▷ If out of

bounds...
xc ← x3 ▷ ...use bisection instead

end if
yc ← f(xc) ▷ Evaluate f at the new guess
y′c ← f ′(xc)
if |yc − y| < ϵy then ▷ Test for Newton convergence

return xc
end if
if yc < y then ▷ If this is a lower bound

xa ← xc ▷ Replace the lower bound
ya ← yc
y′a ← y′c
x1 ← xa + (y − ya)/y

′
a ▷ A new lower candidate

. . .

142

Algorithm 4 HYBRID1: Hybrid bisection continued
. . .

else ▷ If this is an upper bound
xb ← xc ▷ Replace the upper bound
yb ← yc
y′b ← y′c
x2 ← xb + (y − yb)/y

′
b ▷ A new upper candidate

end if
x3 = (xa + xb)/2 ▷ A new bisection candidate

end while
return x3 ▷ Convergence by bisection

end procedure

brid iteration. However, in testing, it has never failed to converge on
any of the multi-phase models. Under the most difficult conditions, it
might take ten or more iterations to converge. In better conditions, it
typically converges in five or so iterations.

143

Algorithm 5 HYBRID1: Paranoid hybrid iteration

procedure hybrid1(f, y, xa, xb, ϵx, ϵy)
ya ← f(xa) ▷ Evaluate f at the initial bounds
y′a ← f ′(xa)
yb ← f(xb)
y′b ← f ′(xb)
if ya > yb then

xa, ya, y
′
a ↔ xb, yb, y

′
b ▷ Swap the bounds

end if
if NOT ya < y < yb then

return “ERROR: The solution is not bracketed”
end if
x1 ← xa + (y − ya)/y

′
a ▷ The first candidates

x2 ← xb + (y − yb)/y
′
b

x3 ← (xa + xb)/2
while |xb − xa| > ϵx do ▷ Halt if the interval is small

▷ If either guess is out of bounds...
if x1 /∈ (xa, xb) OR x2 /∈ (xa, xb) then

xc ← x3 ▷ ...use bisection instead
else

xc ← median(x1, x2, x3) ▷ Select the median
end if
yc ← f(xc) ▷ Evaluate f at the new guess
y′c ← f ′(xc)
if |yc − y| < ϵy then ▷ Test for Newton convergence

return xc
end if
if yc < y then ▷ If this is a lower bound

xa ← xc ▷ Replace the lower bound
ya ← yc
y′a ← y′c
x1 ← xa + (y − ya)/y

′
a ▷ A new lower candidate

. . .

144

Algorithm 6 HYBRID1: Paranoid hybrid iteration continued
. . .

else ▷ If this is an upper bound
xb ← xc ▷ Replace the upper bound
yb ← yc
y′b ← y′c
x2 ← xb + (y − yb)/y

′
b ▷ A new upper candidate

end if
x3 = (xa + xb)/2 ▷ A new bisection candidate

end while
return x3 ▷ Convergence by bisection

end procedure

145

Bibliography

[1] M. W. Chase, NIST-JANAF thermochemical tables fourth edition;
part I, Al-Co. Gaithersburg, Maryland 20899-0001: American
Chemical Society, American Institute of Physics, and National
Institute of Standards and Technology, 1998.

[2] “Inchi trust home page.” InChI Trust, https://www.inchi-
trust.org/. accessed: Apr, 2022.

[3] “Cas home page.” Chemical Abstracts Service, American Chemi-
cal Society, https://www.cas.org. accessed: Apr, 2022.

[4] L. V. Judson, “Weights and measures standards of the united
states, a brief history,” Tech. Rep. SP447, National Bureau of
Standards, Washington DC, 20402, Mar 1976.

[5] M. B. D. L. Grye, M. W. Foerster, M. R. Siegel, M. V. V. Lang,
M. W. Marek, and M. L. B. D. Zagon, “Resolution2: Declaration
on the unit of mass and on the definition of weight; conventional
value of gn,” in Proceedings of the 3rd CGPM, (Paris), 1901.

[6] M. DeBroglie, R. Vieweg, G. Zickner, U. Stille, E. Padelt, and
E. Blechschmidt, “Resolution4: Definition of the standard atmo-
sphere,” in Proceedings of the 10th CGPM, (Paris), 1954.

[7] B. Inglis, J. Ulrich, and M. Milton, The International System of
Units. Creative Commons: BIPM, 9th ed., 2019.

[8] A. Thompson and B. N. Taylor, “Guide for the use of the inter-
national system of units,” Tech. Rep. SP811, NIST, Gaithersburg,
MD 20899, Mar 2008.

146

[9] A. V. Astin, H. A. Karo, and F. H. Mueller, “Refinement of values
for the yard and the pound,” in Federal Register, (Washington
DC), National Bureau of Standards, Jul 1959.

[10] K. Butcher, L. Crown, and E. J. Gentry, “The international sys-
tem of units (si) - conversion factors for general use,” Tech. Rep.
SP1038, Weights and Measures Division, NIST, May 2006.

[11] J. R. Rumble, CRC Handbook of Chemistry and Physics. Boca
Raton, FL: Taylor and Francis, 98th ed., 2018.

[12] National Institute for Standards and Technology,
https://webbook.nist.gov/. accessed: Jun, 2021.

[13] B. J. McBride, S. Gordon, and M. A. Reno, “Coefficients for cal-
culating thermodynamic and transport properties of individual
species,” Tech. Rep. 4513, NASA, 1993.

[14] R. B. Stewart, R. T. Jacobsen, and W. Wagner, “Thermodynamic
properties of oxygen from the triple point to 300 k with pressures
to 80 mpa,” Journal of Physical and Chemical Reference Data,
vol. 20, no. 5, p. 917, 1991.

[15] U. Setzmann and W. Wagner, “A new equation of state and ta-
bles of thermodynamic properties for methane convering the range
from the melting line to 625 k at pressures up to 1000 k,” Journal
of Physical and Chemical Reference Data, vol. 20, p. 1061, 1991.

[16] R. Span and W. Wagner, “Equations of state for technical appli-
cations. i. simultaneously optimized functional forms for nonpolar
and polar fluids,” International Journal of Thermophysics, vol. 24,
no. 1, pp. 1–39, 2003.

[17] R. Span and W. Wagner, “Equations of state for technical appli-
cations. ii. results for nonpolar fluids,” International Journal of
Thermophysics, vol. 24, no. 1, pp. 41–109, 2003.

[18] R. Span and W. Wagner, “Equations of state for technical ap-
plications. iii. results for polar fluids,” International Journal of
Thermophysics, vol. 24, no. 1, pp. 111–162, 2003.

147

[19] REFPROP, Software, https://www.nist.gov/srd/refprop.

[20] R. Span and W. Wagner, “A new equation of state for carbon
dioxide covering the fluid region from the triple-point temperature
to 1100 k at pressures up to 800 mpa,” Journal of Physical and
Chemical Reference Data, vol. 25, p. 1509, 1994.

[21] T. Petrova, “Revised release on the iapws formulation 1995 for the
thermodynamic properties of ordinary water substance for general
and scientific use,” tech. rep., 2014.

[22] C. Tegeler, R. Span, and W. Wagner, “A new equation of state for
argon covering the fluid region for temperatures form the metling
line to 700 k at pressures up to 1000 mpa,” Journal of Physical
and Chemical Reference Data, vol. 28, p. 779, 1999.

[23] I. A. Richardson, J. W. Leachman, and E. W. Lemmon, “Funda-
mental equation of state for deuterium,” Journal of Physical and
Chemical Reference Data, vol. 43, p. 013103, 2014.

[24] J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W.
Lemmon, “Fundamental equations of state for parahydrogen,
normal hydrogen, and orthohydrogen,” Journal of Physical and
Chemical Reference Data, vol. 38, p. 721, 2009.

[25] R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and
A. Yokozeki, “A reference equation of state for thethermodynamic
properties of nitrogen fortemperatures from 63.151 to 1000 k and-
pressures to 2200 mpa,” Journal of Physical and Chemica Refer-
ence Data, vol. 29, no. 6, pp. 1361–1433, 2000.

[26] C.-C. Piao and M. Noguchi, “An interntional standard equa-
tion of state for thermodynamic properties of hfc-125 (pentaflu-
oroethane),” Journal of Physical and Chemical Reference Data,
vol. 27, p. 775, 1998.

[27] R. Tilner-Roth and H. D. Baehr, “An international stan-
dard formulation for the thermodynamic properties of 1,1,1,2-
tetrafluoroethane (hfc-134a) for temperatures from 170 k to 455 k

148

and pressures up to 70 mpa,” Journal of Physical and Chemical
Reference Data, vol. 23, p. 657, 1994.

[28] E. W. Lemmon and R. T. Jacobsen, “An international stan-
dard formulation for the thermodynamic properties of 1,1,1-
trifluoroethane (hfc-143a) for temperatures from 161 to 450 k and
pressures to 50 mpa,” Journal of Physical and Chemical Reference
Data, vol. 29, no. 4, pp. 521–552, 2000.

[29] R. Akasaka, Y. Zhou, and E. W. Lemmon, “A fundamental equa-
tion of state for 1,1,1,3,3-pentafluoropropane (r-245fa),” Journal
of Physical and Chemical Reference Data, vol. 44, p. 013104, 2015.

[30] M. Richter, M. O. McLinden, and E. W. Lemmon, “Thermody-
namic properties of 2,3,3,3-tetrafluoroprop-1-ene (r1234yf): va-
por pressure and p-rho-t measurements and an equation of state,”
Journal of Chemical and Engineering Data, vol. 56, pp. 3254–3264,
2011.

[31] M. Thol and E. W. Lemmon, “Thermodynamic equation
of state for the thermodynamic properties of trans-13,3,3-
tetrafluoropropene [r-1234ze(e)],” International Journal of Ther-
mophysics, vol. 37, no. 28, pp. 1–16, 2016.

149

	Foreword
	Nomenclature
	Introduction
	The Properties
	Basic Properties
	Primary Properties
	Density, ρ
	Specific volume, v
	Temperature, T
	Pressure, p
	Internal Energy, e
	Enthalpy, h
	Entropy, s
	Free (Helmholtz) energy, f
	Gibbs energy, g
	Specific Heats, cp cv
	Speed of sound, a

	Getting started
	Installation
	Prerequisites
	Installation with pip
	Manual installation with git
	Manual installation from Sourceforge

	Using PYroMat
	Importing
	Retrieving substance data
	Searching for substances with search()
	Finding substances with info()
	In-line documentation

	Property interface
	Property method arguments
	Default values
	Inverse methods
	Tips and tricks

	Configuration
	The pm.config instance
	Making temporary changes to config

	Configuration files

	Units
	Unit definitions
	Setup
	Constants
	Conversion Class
	Fundamental Units
	Time
	Length
	Mass and Weight
	Molar
	Matter
	Temperature

	Derived Units
	Force
	Energy
	Pressure
	Volume

	The PYroMat modules
	The class registry module, reg
	The data module, dat
	The load() function
	Data files
	Tools for working with data files

	The utility module, utility
	PYroMat error types
	Redundancy tools
	Other tools

	Ideal Gases
	Properties of ideal gases
	Ideal gas law
	Internal energy
	Enthalpy
	Specific heats
	Entropy and enthalpy revisited
	Formation properties
	Speed of sound
	Other properties
	Properties of mixtures

	The ideal gas collection
	The Shomate equation: ig
	The NASA polynomial: ig2
	The ideal gas mixture: igmix

	Multi-phase substance models
	General formulation for mp1
	Nondimensionalization
	Ideal gas portion of free energy
	Residual portion of free energy
	Derivatives of free energy

	Calculation of properties
	Pressure
	Entropy
	Internal energy
	Enthalpy
	Gibbs free energy
	Specific heats
	Speed of sound
	Liquid-vapor line

	Sources implemented

	Numerical routines
	Polynomials of two variables
	Modifying polynomials for non-integer and negative powers
	Representation of polynomials in data
	Efficient evaluation of the polynomial
	Efficient evaluation of derivatives
	Implementation of the algorithm

	Polynomials in one dimension
	Iteration with iter1
	Iteration with hybrid1
	Bisection iteration
	The hybrid1 candidates
	Standard candidate selection
	Paranoid candidate selection

	Bibliography

